THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF PURE \& APPLIED SCIENCES
DIPLOMA IN NAUTICAL SCIENCES
AMA 2102: MATHEMATICS FOR SCIENCE II
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer ALL questions in section A and THREE questions in section B
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)

Question One (40 marks)

$$
0^{\circ} \leq \theta \leq 360^{\circ}
$$

a) Solve the following equations for

$$
6 \cos \theta=2
$$

i)

$$
3-6 \sin ^{2} \theta=0
$$

ii)

$$
1 / 4 \tan ^{2} \theta=2.1
$$

iii)

$$
3 \cos ^{2} \theta+\cos \theta-2=0
$$

iv)
b) Show that:

$$
\frac{\sin ^{2}(\sec x+\operatorname{cosec} x)}{\cos x \tan x}=1+\tan x
$$

i)

$$
\tan \left(x+\frac{\pi}{4}\right) \tan \left(x-\frac{\pi}{4}\right)=-1
$$

ii)
c) (i) Solve the following equations.

$$
\begin{aligned}
& \frac{1}{2 x}+\frac{3}{5 y}=4 \\
& \frac{4}{x}+\frac{1}{2 y}=10.5
\end{aligned}
$$

$$
\begin{equation*}
5 x-\frac{3}{y}=1 \text { and } x+\frac{4}{y}=5 / 2 \quad \frac{x y+1}{y} \tag{4marks}
\end{equation*}
$$

(ii) If
, find the value of

$$
p=\frac{a^{2} x+a^{2} y}{r}
$$

d) (i) Transpose the formula
to make a the subject.
(ii) The sag S at the centre of a wire is given by the formula

$$
S=\sqrt{\frac{3 d(l-d)}{8}}
$$

make l the subject of formula and evaluate l when $\mathrm{d}=1.75$ and $S=0.80$

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$
3.5 \cos A-5.8 \sin A=6.5 \quad O^{\circ} \leq A \leq 360^{\circ}
$$

a) Solve the equation for
$4 \cos 3 \theta \cos \theta$
b) Express as a sum or difference

$$
\frac{\cos 6 x+\cos 2 x}{\sin 6 x+\sin 2 x}=\cot 4 x
$$

c) Show that

$$
\sin 5 \theta+\sin 3 \theta
$$

d) Express as a product
e) Express the polar co-ordinates $\left(5,143.1^{\circ}\right)$ in rectangular form

Question Three (20 marks)

$$
r=2 \sin \theta \quad \theta=0 \quad \theta=360^{\circ}
$$

a) Plot the polar graph of between and

$$
r \cos (\theta-\alpha)=P
$$

b) Find the Cartesian equation of

$$
x^{2}+y^{2}-2 y=0
$$

c) Determine the polar equation of
d) Express in polar coordinates the position $(-5,2)$

Question Four (20 marks)

a) Find the polar equation of the following loci:
i) A straight line perpendicular to the initial line at a distance a from the origin.
ii) A circle, centre at the origin, radius a
b) Sketch the curve given parametrically by:

$$
x=\sin \theta, y=\sin 2 \theta \quad \text { for values of } \theta \text { between } O^{\circ} \text { and } 360^{\circ}
$$

$$
y=t x
$$

c) By substituting , find the parametric equations for the loci whose Cartesian equation is

$$
x^{3}+y^{3}=3 \times y
$$

(5 marks)

Question Five (20 marks)

$$
A(-1,2)
$$

a) Find the locus of a point P whose distance from the point
is twice its distance from the origin.
(6 marks)

$$
y=3 x^{2}-8 x+5
$$

b) Find the equation of the tangent and the normal to the curve. $x=2$

$$
x=\frac{2-t}{1+2 t} \quad y=\frac{3+t}{1+2 t}
$$

c) Show that the line given parametrically by the equations.
at the point where
(8 marks)
(6 marks)

