

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) (A Centre of Excellence)

Faculty of Applied & Health

Sciences

DEPARTMENT OF PURE & APPLIED SCIENCES

DIPLOMA IN NAUTICAL SCIENCES

AMA 2102: MATHEMATICS FOR SCIENCE II

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of **FIVE** questions in **TWO** sections **A** & **B** Answer **ALL** questions in section **A** and **THREE** questions in section **B** Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **SECTION A (COMPULSORY)**

Question One (40 marks)

$$0^{\circ} \le \theta \le 360^{\circ}$$
a) Solve the following equations for

$$6\cos \theta = 2$$
(4 marks)

$$3 - 6\sin^{2} \theta = 0$$
(4 marks)

$$\frac{1}{4}\tan^{2} \theta = 2.1$$
(4 marks)

$$3\cos^{2} \theta + \cos \theta - 2 = 0$$
(4 marks)

$$3\cos^{2} \theta + \cos \theta - 2 = 0$$
(4 marks)

b) Show that:

$$\frac{\sin^{2}(\sec x + \cos ecx)}{\cos x \tan x} = 1 + \tan x$$
i)
$$\tan\left(x + \frac{\pi}{4}\right) \tan\left(x - \frac{\pi}{4}\right) = -1$$
ii)
(4 marks)

c) (i) Solve the following equations.

$$\frac{1}{2x} + \frac{3}{5y} = 4$$

$$\frac{4}{x} + \frac{1}{2y} = 10.5$$
(4 marks)
$$5x - \frac{3}{y} = 1 \text{ and } x + \frac{4}{y} = \frac{5}{2}$$
(ii) If
$$y = \frac{xy + 1}{y}$$
(4 marks)
$$p = \frac{a^2x + a^2y}{r}$$

$$S = \sqrt{\frac{3d(l-d)}{8}}$$

make *l* the subject of formula and evaluate *l* when d = 1.75 and S = 0.80

(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

	$3.5\cos A -$	$5.8 \sin A = 6.5$	$O^{\circ} \leq A \leq 360^{\circ}$	
a)	Solve the equation	fo	r	(8 marks)
	$4\cos 3\theta\cos \theta$			
b)	Express as a sur	n or difference		(5 marks)
	$\frac{\cos 6x + \cos 2x}{\cos 2x} = \cos 2x$	ot $4x$		
	$\sin 6x + \sin 2x$			
c)	Show that			(3 marks)
	$\sin 5\theta + \sin 3\theta$			
d)	Express as a pi	oduct		(2 marks)
e)	Express the polar co-ordinates	(5,143.1°) in rect	angular form	(2 marks)

Question Three (20 marks)

	$r = 2\sin\theta$ $\theta = 0$ $\theta = 360^{\circ}$					
a)	Plot the polar graph of between and	(10 marks)				
	$r\cos(\theta - \alpha) = P$	· · ·				
b)	Find the Cartesian equation of	(3 marks)				
	$x^2 + y^2 - 2y = 0$					
c)	Determine the polar equation of	(4 marks)				
d)	Express in polar coordinates the position (-5, 2)	(3 marks)				
Question Four (20 marks)						
a)	Find the polar equation of the following loci:i) A straight line perpendicular to the initial line at a distance a from the origin.ii) A circle, centre at the origin, radius a	(3 marks) (2 marks)				
b)	Sketch the curve given parametrically by: $x = \sin \theta$, $y = \sin 2\theta$ θ O° 360° for values of between and	(10 marks)				

y = tx

c) By substituting , find the parametric equations for the loci whose Cartesian equation is , $x^3 + y^3 = 3 \times y$ (5 marks)

Question Five (20 marks)

- a) Find the locus of a point P whose distance from the point A(-1,2)is twice its distance from the origin.
 (6 marks) $y = 3x^2 - 8x + 5$ b) Find the equation of the tangent and the normal to the sume
- b) Find the equation of the tangent and the normal to the curve. x = 2 at the point where

(8 marks)

$$x = \frac{2-t}{1+2t}$$
 $y = \frac{3+t}{1+2t}$

c) Show that the line given parametrically by the equations.

(6 marks)