

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING CERTIFICATE IN BUILDING \& CIVIL ENGINEERING (CTI)

AMA 1201: ENGINEERING MATHEMATICS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination Answer Booklet

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) (i) State any THREE laws of friction.
(3 marks)
(ii) A block of metal with a mass of 30 kg requires a horizontal force of 50 N to pull it with uniform velocity along a horizontal surface. Calculate the coefficient of friction between the surface and the block.
b) A bus of mass 2000 kg travelling at a constant velocity of $72 \mathrm{~km} / \mathrm{hr}$ collides with a stationary car of mass 1000kg. The impact takes 2 seconds before the two move together at a constant velocity for 20 seconds. Calculate:
(i) The common velocity
(ii) The distance moved after the impact
(iii) The impulse force
(iv) The change in kinetic energy
(12 marks)

Question Two

$$
P=2 i+j-k \quad q=i-3 j+2 k
$$

a) If and find:
$p . q$
(i)
(ii)

$$
\begin{equation*}
p+q \tag{2marks}
\end{equation*}
$$

(iii)

$$
|p|+|q|
$$

(iv)

$$
|p|-|q|
$$

(v)

$$
F_{1}=22
$$

b) If units at $140^{\circ}, \mathrm{F}_{2}=40$ units at 190° and $\mathrm{F} 3=15$ units at 290°, calculate the resultant of:
(i) $\quad \mathrm{F}_{1}-\mathrm{F}_{2}+\mathrm{F}_{3}$
(ii) $\mathrm{F}_{2}-\mathrm{F}_{1}-\mathrm{F}_{3}$

Question Three

$$
X=5 i+j-2 k, \quad Y=4 i-2 j+k \quad Z=2 i-2 k
$$

a) If
and
Calculate:

$$
2 x-2 y
$$

(i)

$$
2 z \times(2 x-3 y)
$$

(ii)

$$
2 x-1 / 2 z
$$

(iii)
(2 marks)
b) Determine the angle between vectors Ox and Oy where:
$0 x=i+2 j-3 k$
$0 y=2 i-j+4 k$
(10 marks)

Question Four

a) (i) Explain the term simple harmonic motion.
(ii) A piston of mass 200 g , moves with simple harmonic motion. If the amplitude of the piston is 70 mm and its frequency is 10 Hz , calculate:
(i) Maximum acceleration
(ii) Maximum velocity
(iii) Maximum kinetic energy
b) (i) State Newton First Law of Motion
(ii) Define the following terms
(i) Impulse
(ii) Momentum
(iii) Inertia
c) A car of mass 1200 kg travelling at $45 \mathrm{~m} / \mathrm{s}$ is brought to rest in 9 seconds. Calculate:
(i) Average retardation
(ii) Average force applied by the brakes.

Question Five

Figure 5

For the figure 5 above:
(i) Calculate the resultant force on the plate
(ii) The angle made by its line of action with vertical.

