

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

CERTIFICATE IN BUILDING & CIVIL ENGINEERING (CTI)

AMA 1201: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of **FIVE** questions.

Answer any **THREE** questions

Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

Question One

a) (i) State any THREE laws of friction.

(3 marks)

(ii) A block of metal with a mass of 30kg requires a horizontal force of 50N to pull it with uniform velocity along a horizontal surface. Calculate the coefficient of friction between the surface and the block. (Take $g = 10 \text{m/s}^2$)

(5 marks)

- **b)** A bus of mass 2000kg travelling at a constant velocity of 72km/hr collides with a stationary car of mass 1000kg. The impact takes 2 seconds before the two move together at a constant velocity for 20 seconds. Calculate:
 - **(i)** The common velocity
 - **(ii)** The distance moved after the impact
 - (iii) The impulse force
 - **(iv)** The change in kinetic energy

(12 marks)

Question Two

$$P = 2i + j - k \qquad q = i - 3j + 2k$$

- **a)** If and find: p.q
 - (i) p+q (3 marks)
 - (ii) |p+q|
 - (iii) (3 marks) |p|+|q|
 - (iv) |p|-|q|
 - (v) (2 marks)

 $F_1 = 22$

- **b)** If units at 140° , $F_2 = 40$ units at 190° and $F_3 = 15$ units at 290° , calculate the resultant of:
 - (i) $F_1 F_2 + F_3$
 - (ii) $F_2 F_1 F_3$ (8 marks)

Question Three

$$X = 5i + j - 2k$$
, $Y = 4i - 2j + k$ $Z = 2i - 2k$

a) If and

Calculate:

$$2x-2y$$

(i) (3 marks)

 $2z\times(2x-3y)$ (ii) (5 marks) $2x-\frac{1}{2}z$ (iii) (2 marks)

b) Determine the angle between vectors Ox and Oy where:

$$0x = i + 2j - 3k$$

$$0y = 2i - j + 4k$$

(10 marks)

Question Four

a) (i) Explain the term simple harmonic motion.

(2 marks)

- (ii) A piston of mass 200g, moves with simple harmonic motion. If the amplitude of the piston is 70mm and its frequency is 10Hz, calculate:
- (i) Maximum acceleration
- (ii) Maximum velocity

(iii) Maximum kinetic energy

(7 marks)

b) (i) State Newton First Law of Motion

(1 mark)

- (ii) Define the following terms
 - (i) Impulse
 - (ii) Momentum
 - (iii) Inertia

(3 marks)

- c) A car of mass 1200kg travelling at 45m/s is brought to rest in 9 seconds. Calculate:
 - (i) Average retardation
 - **(ii)** Average force applied by the brakes.

(7 marks)

Question Five

Figure 5

For the figure 5 above:

- (i)
- Calculate the resultant force on the plate The angle made by its line of action with vertical. (ii)

(20 marks)