THE MOMBASA POLYTECHNIC UNIVERSITY
 COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING CERTIFICATE IN CONSTRUCTION TECHNICIAN PART II

AMA 1110: GEOMETRY I

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Mathematical Tables/Calculator

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

a) Three forces of magnitude $200 \mathrm{KN}, 100 \mathrm{KN}$ and 50 KN act at a point in the same plane at $30^{\circ}, 120^{\circ}$ and 25° from the horizontal respectively.

Determine:
(i) Magnitude of resultant forces
(ii) The angle between the resultant force and the smallest force
b) A circular pole 4 m long has a section cut off along its entire length. The maximum thickness for the cut off is 0.07 m as shown in figure 1. Find:
(i) Volume for the off cut
(ii) Area of the curved surface

Fig 1

SECTION B (Answer any TWO questions from this section)

Question 2

$$
F=2 i+j-K N
$$

a) (i) A force acts on a line passing through a point A. Find moment M and its magnitude about point B . The co-ordinates for points A and B are $(1,2,3) \mathrm{M}$ and $(0,1,1)$ respectively.
(ii) Find the work done by the force in a(i)

$$
\begin{aligned}
& P=3 i+2 j-k \\
& Q=i-j+0.5 k
\end{aligned}
$$

b) Two forces are given as

Find:
(i) $\mathrm{P} . \mathrm{Q}$
(ii) $P-Q$
(iii) $P \times Q$

Question 3

a) Two forces of magnitudes 1.30 N and 200 N at a point in the same plane the angle between the forces is $45^{\circ} 10^{\prime}$ and the 200 N force is in the horizontal plane. Find:
(i) The resultant force
(ii) The direction in which the resultant acts from the 200N force

Question 4

$$
\underset{\sim}{a}=2 \underset{\sim}{i}+4 \underset{\sim}{b} \quad \underset{\sim}{b} i+4 \underset{\sim}{j}+5 \underset{\sim}{k}
$$

$$
a-b
$$

(i)

$$
|a+b|
$$

(ii)

$$
\underset{\sim}{a} \quad \underset{ }{b}
$$

(iii) Angle between and
b) A tunnel is 20 m long, the width and height of the wall are 6 m and 4 m respectively. The center of the rectangular section is also the centre for the arched section. Find
(i) Surface area for the roof
(ii) Volume of rocks were removed

Question 5

a) Two velocities are expressed in the form

$$
\begin{aligned}
& V_{1}=3 \underset{\sim}{i}+6 \underset{\sim}{j}-\underset{\sim}{k} \\
& V_{2}=2 \dot{j}+2 \underset{\sim}{j}+2 k
\end{aligned}
$$

Determine:

$$
\begin{equation*}
V_{1}+V_{2} \tag{i}
\end{equation*}
$$

$$
V_{1}-V_{2}
$$

(ii)
(iii) Angle between the vectors
b) Figure 2 shows a cross section of a tunnel that was laid across a load v / m in width.
(i) Volume conveyed by the culvert when the running full
(ii) Volume of material used to cover the culvert
0.45 m

