THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
 Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING CERTIFICATE IN CONSTRUCTION TECHNICIAN II

AMA 1110: GEOMETRY II
END OF SEMESTER EXAMINATION

SERIES: APRIL 2012

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical tables
- Calculator

This paper consists of FIVE questions in TWO sections I \& II.
Answer question ONE (COMPULSORY) plus any other TWO questions.
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

SECTION I (COMPULSORY)

Question 1 (20 marks)

a) In figure 1 below calculate:
(i) The length of the arc ACB
(ii) The area of segment ACB

Figure 1
b) A cone of base radius 7 cm and height 15 cm is held upside down and filled with water. How much water does it hold when full?

What is the minimum area of plate that would make the cone?
c) Express the following Cartesian equations in polar form

$$
y^{2}=8 x
$$

(i)

$$
x^{2}+y^{2}=4 x
$$

(ii)
d) Express in Cartesian form

$$
r=3
$$

i)

$$
r=\cos \theta
$$

ii)
e) If and

$$
a=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \quad b=\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)
$$

$$
\underset{\sim}{a}+\underset{\sim}{b}
$$

Find (i)
(iii)
f) Simplify as much as possible

$$
\begin{array}{ll}
& 3 i \times j \\
\text { (i) } & 2 i \times(i+j+k) \tag{2marks}\\
\text { (ii) } &
\end{array}
$$

(2 marks)

$$
a=2 i+j+5 k \quad b=3 i+5 j+7 k \quad \underset{\sim}{a} \cdot \underset{\sim}{b}
$$

g) Given that and . Find

SECTION II (Attempt any TWO questions)

Question 2 (20 marks)

$$
R=4 \cos 2 t
$$

a) A graph has the equation
(i) Complete the table
(4 marks)

t^{0}	0	15	30	45	60	75	90	105	120	135	150	165	180	195	210
2 t															
R															

$R=4 \cos 2 t$
(ii) Draw the polar graph for

$$
9 x^{2}+5 y^{2}=45
$$

b) An ellipse has an equation . Find the
(i) Foci
(3 marks)
(ii) x and y intercepts
(3 marks)
(iii) Sketch the ellipse

Question 3 (20 marks)

a) State the gradient and the y-intercepts of

$$
3 x+5 y=7
$$

(i)

$$
4 x-7 y=7
$$

(ii)
b) (i) Find the equation of a line passing through the point $(4,3)$ and perpendicular to line

$$
2 x-5 y=1
$$

(ii) Find the equation of line passing through $(-1,4)$ and $(5,-2)$
c) From a straight line graph of R and F , these points were selected.
$\mathrm{R}=85$ when $\mathrm{F}=39$
$\mathrm{R}=45$ where $\mathrm{F}=23$.
If the law of the line $F=m R+C$, find the value of m and c

Question 4 (20 marks)

A tapered roller shown below is 35 mm long. Its larger diameter is 40 mm and its smaller diameter is 30 mm .

Figure 2

Question 5 (20 marks)

$$
3 i-3 k \quad i+2 j-7 k
$$

a) Points P and Q have position vectors and respectively. Find $\overrightarrow{O P} \cdot \overrightarrow{O Q}$
(i)

$$
\begin{equation*}
O P \times O Q \tag{ii}
\end{equation*}
$$

(iii) Area of triangle OPQ
b) Calculate the volume of a rectangular based frustum of a pyramid whose base is 12 cm by 9 cm , top 4 cm by 3 cm and height of 8 cm

