THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence)
Faculty of Engineering \&
Technology
DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBC 12S) DIPLOMA IN ARCHITECTURE (DA 12S)

AMA 1109: ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination
- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) A Contractor sinks a well at a cost of kshs 20 thousand for first 10 metres, kshs 22.5 thousand for the next 10 meres and kshs 25 thousand for the following 10 metres and so on. If the total cost is $\mathrm{K} £$ 562.5 thousand, find:
(i) Depth of the well
(ii) Cost of the last $10^{\text {th }}$ metre
(6 marks)

$$
(2 x-3)^{14}
$$

b) Find the $8^{\text {th }}$ term in the binomial expansion of
(4 marks)

$$
\sqrt{\frac{1-x}{1+x}}
$$

c) (i) Expand neglecting terms containing x^{3} and higher and giving the answer as:

$$
\begin{aligned}
& 1-x+x^{2} / x \\
& x=\frac{1}{8} \\
& \sqrt{7}=2 \frac{83}{128}
\end{aligned}
$$

(ii) By putting in the expansion show that
(10 marks)

Question Two

$$
\sqrt{3} \cos \theta+3 \sin \theta=3 \quad 0 \leq \theta \leq 360^{\circ}
$$

a) Solve the equation for
(6 marks)

$$
\frac{1}{\sqrt{3}}
$$

b) Evaluate using binomial expansion method

$$
z^{3}+1-3 j=0 \quad a+b j
$$

c) (i) Solve giving the answer in the form
(ii) Represent the roots in (i) on an Argand diagram

Question Three

a) A Surveyor 100 m at station $\mathrm{A} \mathrm{N} 30^{\circ} \mathrm{w}$ from the foot of a tower finds the angle of elevation to the top of the tower as 15°. The Surveyor then moves 200 m to station B N40 ${ }^{\circ}$ E and finds the angle of elevation to be 20°. Determine:
(i) Distance of station B from the towers foot
(ii) Distance between the two stations
b) A mechanical plant cost K£40,000 when new. It depreciates at a rate of 2% per annum. Find:
(i) Its cost at the end of $10^{\text {th }}$ year
(ii) The year when it will be worthy $K £ 5,000$

Question Four

a) A model has 25 polygonal sides. The last side is 8 times the shortest side. All the sides have a perimeter 1100 mm . Find the dimension of the $5^{\text {th }}$ side.
b) By using $\tan x / 2=t \quad R \sin (x-\alpha)=c$ or $2 \operatorname{solv} x-\cos x-1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$
(8 marks)
c) Given

$$
z_{1}=2-j z_{2}=-3-2 j \quad Z_{3}=Z_{1} / Z_{2}^{2} \quad r(\cos \theta+j \sin \theta)
$$

Question Five

a) A contractor requires 1250 bags of cement this month 750 bags next month, 450 bags the following month and so on. Find:
(i) Number of bags required in the $10^{\text {th }}$ month
(ii) The time when 5 bags will be needed
b) (i) Expand up to the term containing the following.

$$
\frac{1}{\sqrt{\left(1-\frac{x}{5}\right)}}
$$

$\sqrt{5}$
(ii) By putting $x=1$ in the expansion obtained in (i) find correct to 4 decimal places.
(8 marks)
c) The first and last terms of an A.P are 3 and 10 respectively. If the terms add up to 43 , find the $5^{\text {th }}$ term.
(5 marks)

