THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UPGRADING MATHEMATICS

AMA 1103: CALCULUS

FINAL EXAMINATION

SERIES: AUGUST/SEPTEMBER 2011
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other two questions
This paper consist of THREE printed pages

$$
y=x^{2}+3 x+2
$$

a) Given the function , find;
(i) The gradient function the curve
(ii) The gradient of the curve at $(1,2)$
(iii) The equation of the tangent at $(1,2)$
(iv) The equation of the normal at $(1,2)$
(v) The turning point
b) (i) Integrate the function

$$
\int_{0}^{3} \frac{x^{2}+5 x+6}{x+2}
$$

c) Use product rule to differentiate

$$
y=e^{x+1} \cos x
$$

d) Use substitution method to integrate

$$
\int \frac{d x}{x^{2}+2 x+10}
$$

Question Two (20 marks)

$$
y=x^{3}
$$

a) Using first principles differentiate
(4 marks)

$$
v=10\left(10 t-t^{2}\right)
$$

b) The speed of a body $v \mathrm{~m} / \mathrm{s}$ through the air at time t seconds is given by

Find
i) The value of t for the maximum velocity to be obtained
ii) The distance travelled by the body in the first 6 seconds from rest (4 marks)

$$
t=6.5
$$

iii) Its acceleration when
iv) The velocity of the body when

$$
y=2 / 3 x^{3}-1 / 2^{x^{2}-x+5}
$$

$$
x=2
$$

c) Find the derivative of the curve at point where
a) Using chain rule differentiate

$$
y=(2 x+3)^{-4}
$$

(i)

$$
\begin{equation*}
y=\cos ^{3} 5 x \tag{4marks}
\end{equation*}
$$

(ii)
b) Use substitution method to integrate
(5 marks)

$$
\int \frac{d x}{1+x^{2}}
$$

$$
y=3 x^{2}+4
$$

c) Find by integration the area bounded by the curve , the x -axis and the lines $\mathrm{x}=2$ and $x=5$

Question Four (20 marks)

a) A rectangular sheet of metal measures 8 cm by 5 cm . Equal squares up side x are removed from each corner and the edges are folded to make an open box of volume vcm3. Find the value of x for which the volume of the box is maximum and hence find this maximum volumes
b) Find the derivative of:

$$
y=e^{2 x^{4}}
$$

(4 marks)
c) Integrate:

$$
\begin{equation*}
\int_{-1}^{3}(x-1)^{2} d x \tag{4marks}
\end{equation*}
$$

Question Five (20 marks)

$$
y=x^{2}
$$

a) (i) Sketch the curve of
(3 marks)

$$
y=x^{2} \quad y=x, x=1 \quad x=2
$$

(iii) Find the area bounded by the curve and the lines and (10 marks)
b) Use product rule to differentiate:

$$
\begin{equation*}
y=x^{2} \sin 2 x \tag{4marks}
\end{equation*}
$$

c) Integrate

$$
\int_{1}^{2} 4 x^{3} d x
$$

(3 marks)

