THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Engineering and Technology
DEPARTMENT OF BUILDING AND CIVIL ENGINEERING CONSTRUCTION TECHNICIAN PART II

AMA 1102: GEOMETRY II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator/Mathematical Tables

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question 1 (30 marks)

$$
(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}
$$

a) Prove that
b) Solve the equation $2 \sec ^{2} x-\tan x=3$ for
c) Measurements of a plot are as shown in figure 1

Fig 1

Determine:
(i) The fourth side
(ii) Area of the plot
d) A surveyor is at some distance at point A north of a tower. He finds the angle of elevation to the top of the tower to be 30°. He then moves 100 m to point $\mathrm{B} 60^{\circ} \mathrm{E}$ and finds the angle of elevation to the top of the tower to be 20°. find:
(i) Height of the tower
(ii) Bearing of the foot of the tower from point B

SECTION B (Answer any TWO questions from this section)

Question 2

$$
2 \sin x+\cos x=0.5
$$

a) Solve the equation using the half angle formula
b) A tower 70 m high stands on a cliff on the bank of a lake. The angle of depression to a boat on the lake is 20°. The angle of depression to the boat from the foot of the tower is 20°. Calculate;
(i) The height of the cliff
(ii) The distance of the boat from the cliff

Question 3 (20 marks)

a) Solve the equation $\cos 2 x+\cos x=1$ for
(7 marks)

$$
\cot ^{2}\left(\frac{90-\theta}{2}\right)=\frac{1+\sin \theta}{1-\sin \theta}
$$

b) Prove that
c) The roof of a Church is 20 m from the ground. The angle of elevation from the roof to a point on the top of a tower was found to be 15°. Similarly, the angle of elevation to the same point on the top of the tower was 30° when measured from a window 6 m below the roof. Calculate the height of the tower.
(8 marks)

Question 4 (20 marks)

$$
r^{2}=p^{2}+q^{2}-2 p q \cos R
$$

a) Show that for triangle PQR of sides r, p and q.
b) A surveyor is $50 \mathrm{~m} \mathrm{~N} 30^{\circ} \mathrm{W}$ at station P away from the foot of a tower. He then moves 100 m to station Q, N50 ${ }^{\circ}$. Calculate:
(i) The height of the tower
(ii) The bearing of the foot of the tower from station Q
(13 marks)

Question 5 (20 marks)

$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$

a) Show that
. Using triangle PQR
(7 marks)

$$
\sin \theta=0.2 \cos \theta \quad 0^{\circ} \leq \theta^{\circ} 360^{\circ}
$$

b) Solve the equation
for
c) Station P is 100 m from the foot of the tower that is due north of the station. The ground is sloping towards station P at 15° to the horizontal. The angle of elevation to the top of the tower from station P is 22°. calculate the height of the tower
(8 marks)

