

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN STATISTICS & COMPUTER SCIENCE BACHELOR OF MATHEMATICS & COMPUTER SCIENCE

AMA 4212: VECTOR ANALYSIS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) If

 $r4 = a\vec{r}_1 + b\vec{r}_2 + c\vec{r}_3$ that

Find scalars a, b, c such

(5 marks)

b) Show that the points, A(-4, 9, 6) B(-1, 6, 6) and C(0, 7, 10) form a right angled isosceles triangle. **(5 marks)**

 $\vec{r}_1 = 2i - j + k$ $\vec{r}_2 = i + 3j - 2k$ $\vec{r}_3 = -2i + j - 3k$ $r_4 = 3i + 2j + 5k$

$$\vec{r} = 3i + 2i - 3k$$

c) Find the work done in moving an object along vector it the applied force is $\vec{F} = 2i - j - k$

(5 marks)

$$\vec{A} = 2i - 6j - 3k$$
 $\vec{B} = 4i + 3j - k$
d) Determine a unit vector perpendicular to the plane of and (5 marks)
 $x = e^{-t}y = 2\cos 3t$ $z = 2\sin 3t$
e) A particle moves along a curve whose parametric equations are where t is the time.
(i) Find velocity and acceleration at time t (2 marks)
(ii) Find the magnitude of the velocity and acceleration at t = 0 (3 marks)
 $\phi(x, y, z) = 3x^2y - y^3z^2$ $\nabla \phi$
f) If find at the point (1, -2, -1) (5 marks)
Question Two

 $\oint_c xydx + (y^2 + 1)dy$

a) Verify Greens theorem for

and C is the circle centred origin, radius 2

(10 marks)

 $\int_{C} \vec{A} \cdot d\vec{r}$ b) Evaluate from (0, 0, 0) to (1, 1, 1) given that along the path x along the path x (10 marks)

Question Three

a) Prove that:

$$\nabla(F+G) = \nabla F + \nabla G$$
(i)
$$\nabla(FG) = F\nabla G + G\nabla F$$
(ii)
(5 marks)
(5 marks)

where F and G are differentiable scalars of x, y, z

$$A = A_{1}i + A_{2}j + A_{3}K \qquad \overrightarrow{B} = B_{1}i + B_{2}j + B_{3}k \qquad \overrightarrow{C} = C_{1}i + C_{2}j + C_{3}j$$

b) If show that:

$$\vec{A} \cdot \left(\overrightarrow{B} \times \overrightarrow{C}\right) = \begin{vmatrix} A_{1} & A_{2} & A_{3} \\ B_{1} & B_{2} & B_{3} \\ C_{1} & C_{2} & C_{3} \end{vmatrix}$$

(5 marks)

© 2014 - Technical University of Mombasa

$$A \cdot \left(\vec{B} \times \vec{C}\right) = B \cdot \left(\vec{C} \times \vec{A}\right) = \vec{C} \cdot \left(\vec{A} \times \vec{B}\right)$$
c) Prove that (5 marks)
Question Four
 $\vec{r} = \cos wti + \sin wtj$
A particle moves so that its position vector is given by where w is a constant show that.
d) Velocity \vec{v} if the particle is perpendicular to \vec{r} (7 marks)
 $\vec{\alpha}$
e) The acceleration is directed towards the origin and has magnitude proportional to the distance from the origin $\vec{r} \times \vec{v} = a$
f) constant vector (6 marks)

Question Five

a) Verify Stokes' theorem given: $A = (x + y)i + (2y - x)j + z^2k$ and S is the upper surface of the sphere

(15 marks)

$$\overrightarrow{A} = i - 2j + k$$
 $\overrightarrow{B} = 4i - 4j + 7k$

- b) Find the projection of
- on the vector

(5 marks)