TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE BACHELOR OF MATHEMATICS \& COMPUTER SCIENCE

AMA 4212: VECTOR ANALYSIS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)

$$
\vec{r}_{1}=2 i-j+k \quad \vec{r}_{2}=i+3 j-2 k \quad \vec{r}_{3}=-2 i+j-3 k \quad \vec{r}_{4}=3 i+2 j+5 k
$$

a) If

Find scalars a, b, c such

$$
r 4=a \vec{r}_{1}+b \vec{r}_{2}+c \vec{r}_{3}
$$

that
b) Show that the points, $\mathrm{A}(-4,9,6) \mathrm{B}(-1,6,6)$ and $\mathrm{C}(0,7,10)$ form a right angled isosceles triangle.

$$
\vec{r}=3 i+2 j-3 k
$$

c) Find the work done in moving an object along vector it the applied force is $\vec{F}=2 i-j-k$
(5 marks)
d) Determine a unit vector perpendicular to the plane of

$$
\vec{A}=2 i-6 j-3 k \quad \vec{B}=4 i+3 j-k
$$

and
(5 marks)

$$
x=e^{-t} y=2 \cos 3 t \quad z=2 \sin 3 t
$$

e) A particle moves along a curve whose parametric equations are
where t is the time.
(i) Find velocity and acceleration at time t
(2 marks)
(ii) Find the magnitude of the velocity and acceleration at $t=0$
(3 marks)

$$
\phi(x, y, z)=3 x^{2} y-y^{3} z^{2} \quad \nabla \phi
$$

f) If find at the point ($1,-2,-1$)

Question Two

$$
\oint_{c} x y d x+\left(y^{2}+1\right) d y
$$

a) Verify Greens theorem for and C is the circle centred origin, radius 2
(10 marks)

$$
\int_{C} \vec{A} \cdot d \vec{r} \quad A=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k
$$

b) Evaluate from $(0,0,0)$ to $(1,1,1)$ given that along the path x $=t y=t^{2} z=t^{3}$

Question Three

a) Prove that:

$$
\begin{align*}
& \nabla(F+G)=\nabla F+\nabla G \\
& \text { (i) } \tag{5marks}\\
& \nabla(F G)=F \nabla G+G \nabla F
\end{align*}
$$

(ii)
(5 marks)
where F and G are differentiable scalars of $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
A=A_{1} i+A_{2} j+A_{3} K \quad \vec{B}=B_{1} i+B_{2} j+B_{3} k \quad \vec{C}=C_{1} i+C_{2} j+C_{3} j
$$

b) If show that:

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|
$$

$$
A \cdot(\vec{B} \times \vec{C})=B \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B})
$$

c) Prove that
(5 marks)

Question Four

$$
\vec{r}=\cos w t i+\sin w t j
$$

A particle moves so that its position vector is given by
where w is a constant show that.
$\vec{v} \quad \vec{r}$
d) Velocity if the particle is perpendicular to
e) The acceleration is directed towards the origin and has magnitude proportional to the distance from the origin
f)
constant vector
(6 marks)

Question Five

a) Verify Stokes' theorem given:

$$
A=(x+y) i+(2 y-x) j+z^{2} k \quad x^{2}+y^{2}+z^{2}=1
$$

(15 marks)

$$
\vec{A}=i-2 j+k \quad \vec{B}=4 i-4 j+7 k
$$

b) Find the projection of on the vector

