TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2307: THEORY OF STRUCTURES III

END OF SEMESTER EXAMINATION
 SERIES: AUGUST 2013
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical table/Pocket calculator

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) in section \mathbf{A} and any other TWO questions from section \mathbf{B} Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A

Question One (Compulsory)

a) Using method of moment distribution, analyze the frame in figure 1a and plot the bending moment diagram indicating the critical values. Take EI = Constant.
(20 marks)

Figure 1a
b) A Two hinged parabolic arch in figure 1 b of 30 m span and 5 m central rise has a varying second moment of area which is proportional to the secant of the slope of its neutral axis. It carries a point load of 15 KN at a distance 10 m from the left end. Determine the horizontal thrust, BM and radial shear force under the load.

Figure 1a below is a laterally restrained steel beam restrained at the ends and points of application of the loads. For the given loads, determine the size of grade 43 section required.

Figure 1 b

SECTION B (Attempt any TWO questions)

Question Two

The structure shown in figure 2 is a statically indeterminate frame. Using method of consistent deformation, analyze the frame hence draw the bending moment diagram.
(20 marks)
Figure 2

Question Three

a) A udl of $10 \mathrm{KN} / \mathrm{m}$ longer than the span rolls over a beam of 25 m span. Using influence line, determine the maximum shear force and bending moment at a section 10 m from the left end.
(10 marks)
b) A parabolic arch hinged at its springs of span 36 m and rise of 8 m is loaded as shown in figure 3 b . Determine the values of horizontal thrust as well as maximum positive and negative bending moment.
(10 marks)
18m

Question Four

a) Figure 4 shows a loaded continuous beam ABCD 18 m long fixed at A and D and continuous over support B and C. During loading, support B sunk 10mm. Using slope deflection method, analyze the beam and hence draw the BMD indicating the critical values.

Take: Moment of inertia of AB and $\mathrm{CD}=2 \mathrm{I}$
Moment of inertia of $\mathrm{BC}=\mathrm{I}$
$\mathrm{I}=160 \times 10^{6} \mathrm{~mm}^{4}$
$\mathrm{E}=210 \mathrm{KN} / \mathrm{mm}^{4}$

(20 marks)

D

Question Five

Using THREE MOMENT theorem, analyze the beam shown in figure 5 and hence draw the shear force and bending moment diagram indicating all the critical values.
(20 marks)

Figure 5

