

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2215: THEORY OF STRUCTURES II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) and any other TWO questions
All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (COMPULSORY)

a) A single point load of 80 KN crosses a girder of 12 m . Using influences lines. Find the maximum positive and negative shear force and bending moment at a point 4 m from the left end.
(15 marks)
b) Using double integration method, show that for a cantilever with a uniformly distributed load, the maximum deflection is given by:

$$
Y=\frac{W L^{4}}{8 E I}
$$

c) Discuss the rules to be observed while using Macaulay's method for slope and deflection.
(5 marks)

Question Two

a) A cable is used to support six equal and equidistant loads over a span of 14 m . The central dip of the cable is 1.6 m and the loads are 20 KN each. Find the length of the cable required and its crosssectional area, if the safe tensile stress is $15 \times 104 \mathrm{KN} / \mathrm{m}^{2}$. The distance between the loads is 2 metres.

B

b) A wooden beam 140 mm wide and 240 mm deep has a span of 4 m . Determine the load, that can be placed at its centre to cause the beam a deflection of 10 mm . Take E as 6Gpa.

Question Three

A horizontal steel girder having uniform cross-section is 14 m long and is simply supported at its ends. It carries two concentrated loads as shown in figure 3. Using Macaulay's method, calculate the deflections of the beam under the loads C and D. Take E =200Gpa and $\mathrm{I}=160 \times 10^{6} \mathrm{~mm}^{4}$
(20 marks)
B

Question Four

Using influence lines, derive and draw the bending moment diagram for a uniformly distributed load moving over three-hinged parabolic arch.
(20 marks)

Question Five

a) A parabolic arch, hinged at springing and crown has a span of 30 m and central rise 6 m . Determine the magnitude of maximum positive and negative bending moment at a section 10 m from left hand support, when a point load 90 KN rolls over the beam.
b) A cantilever beam 100 mm wide and 180 mm deep is projecting 2 m from a wall. Calculate the uniformly distributed load, which the beam should carry if the deflection of the free end should not exceed 3.5 mm . Take E as 200Gpa.
(10 marks)

