

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (CBCE 13M)

EBC 2202: THEORY OF STRUCTURES I

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required

This paper consists of **THREE** printed pages

Question One

A hollow tube of external and internal diameters 40mm and 25mm respectively extends 5.0mm extends under a tensile force of 150KN. The actual length of the strut is 4.5m. The strut is fully fixed at top and bottom. Determine the Euler buckling load:

Esteel = $270KN/mm^2$

I = Constant (20 marks)

Question Two

a) State the assumptions in the Euler Theory of struts

(6 marks)

b) Illustrate diagrammatically Euler Load for various end conditions of restraint

(6 marks)

c) An I-section in figure 1 is used as a strut. The strut is fully fixed at bottom but pinned at top.

Determine the Euler crippling load. Take Esteel = 206KN/mm²

(8 marks)

Fig 1

Question Three

An I-section in figure 2 is as strut. The strut is subjected to both axial an eccentric loading. Determine actual stresses at point A, B, C and D

Data:

D = 222.23mm

 $I_{xx} = 9462 \text{cm}^4$

 $I_{vv} = 311.9 \text{cm}^4$

 $A = 110.1 \text{cm}^2$

B = 208.8 mm (20 marks)

A T-section is used as a strut. The actual length 4.0m and fully fixed at bottom but pinned at top. Determine the Euler crippling load $E_{steel} = 210KN/mm^2$

180mm

Question Five

Determine the Euler crippling load for a cylindrical section of 40mm and 20mm diameters respectively. The actual length is 5.0mm and is fully fixed at both ends.

Esteel = $210KN/mm^2$

I = Constant (20 marks)