TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (CBCE 13M)

EBC 2202: THEORY OF STRUCTURES I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions. Answer any THREE questions of the FIVE questions
Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required

This paper consists of THREE printed pages

Question One

A hollow tube of external and internal diameters 40 mm and 25 mm respectively extends 5.0 mm extends under a tensile force of 150 KN . The actual length of the strut is 4.5 m . The strut is fully fixed at top and bottom. Determine the Euler buckling load:

$$
\begin{aligned}
& \text { Esteel }=270 \mathrm{KN} / \mathrm{mm}^{2} \\
& \mathrm{I}=\text { Constant }
\end{aligned}
$$

(20 marks)

Question Two

a) State the assumptions in the Euler Theory of struts
b) Illustrate diagrammatically Euler Load for various end conditions of restraint
c) An I-section in figure 1 is used as a strut. The strut is fully fixed at bottom but pinned at top. Determine the Euler crippling load. Take Esteel $=206 \mathrm{KN} / \mathrm{mm}^{2}$

Fig 1

Question Three

An I-section in figure 2 is as strut. The strut is subjected to both axial an eccentric loading. Determine actual stresses at point A, B, C and D

Data:
$\mathrm{D}=222.23 \mathrm{~mm}$
$\mathrm{I}_{\mathrm{xx}}=9462 \mathrm{~cm}^{4}$
$\mathrm{I}_{\mathrm{yy}}=311.9 \mathrm{~cm}^{4}$
$\mathrm{A}=110.1 \mathrm{~cm}^{2}$
$B=208.8 \mathrm{~mm}$
(20 marks)

$$
\mathrm{e}_{\mathrm{y}}=20 \mathrm{~mm}
$$

Question Four

A T-section is used as a strut. The actual length 4.0 m and fully fixed at bottom but pinned at top. Determine the Euler crippling load $\mathrm{E}_{\text {steel }}=210 \mathrm{KN} / \mathrm{mm}^{2}$

180 mm

Question Five

Determine the Euler crippling load for a cylindrical section of 40 mm and 20 mm diameters respectively. The actual length is 5.0 mm and is fully fixed at both ends.

Esteel $=210 \mathrm{KN} / \mathrm{mm}^{2}$
I = Constant
(20 marks)

