

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering &

Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13S & 14J)

EBC 2202: THEORY OF STRUCTURES I

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions All questions carry equal marks Maximum marks for each part of a question are as shown

Use neat, large and well labeled diagrams where required.

© 2014 -Technical University of Mombasa

Question One

- a) State the assumptions in Euler Theory of Struts and state its limitations as that Rankine's theory.
- b) Illustrate diagrammatically Euler load for different and conditions for struts.(6 marks)(6 marks)
- c) An I-section in figure 1 is used as a strut. Both ends are fixed. Determine the Euler crippling load. $E_{steel} = 210 \text{KN/mm}^2$ (8 marks)

20mm

Question Two

A hollow tube with external and internal diameters 35mm and 25mm respectively extends 6.4mm under a tensile load of 200KN. The actual length of the strut is 4.0m. The strut is fully fixed at bottom but pinned at top. Determine the Euler buckling load. (20 marks)

Question Three

An I-section in figure 2 is used as a strut. Both ends are fully fixed. Determine the Euler crippling load if the strut is subjected to axial and eccentric loading. Determine the stresses at points A, B, C and D.

D = 222.3mm Ixx = 9462cm⁴ Iyy = 311.9cm⁴ A = 110.1cm² B = 208.8mm

(20 marks)

Question Four

A T-section in figure 3 is used as a strut. The actual length is 4.5m and both ends are pinned. Determine the Euler crippling load. (20 marks)

Question Five

Determine the Euler crippling load for a cylindrical section of 40mm and 20mm external and internal diameters respectively. The actual length is 5.0m and the strut is fully fixed at both ends. Esteel = 210KN/mm² (20 marks)