

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF MATHEMATICS & COMPUTER SCIENCE

AMA 4306: THEORYOF ESTIMATION

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FOUR** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Let Y_1 , Y_2 and Y_3 be a random sample from a normal distribution where $\begin{array}{c} \mu & \sigma \\ \mu & \mu \end{array}$ are unknown.

Which is a more efficient estimator for

$$\hat{u} = \frac{1}{4}Y_1 + \frac{1}{2}Y_2 + \frac{1}{4}Y_3$$
$$\hat{\mu}_2 = \frac{1}{3}Y_1 + \frac{1}{3}Y_2 + \frac{1}{3}Y_3$$

(7 marks)

b) Suppose the random variables $X_1, X_2,...X_n$ denote the number of successes (0 or 1) in each of n independent trials. Where P = P (success occurs at any given trial) is unknown parameters. Then:

$$Px_{i}(k ; p) = p^{k}(1-p)^{1-k}, \quad k = 0.1; \quad 0
$$\hat{p} = \frac{x}{n} \cdot \hat{p}$$
Let $x = x_{1} + x_{2} + \dots + x_{n} = \text{total number of successes and define}}$
is unbiased for P. Compare
$$\begin{pmatrix} \hat{p} \\ p \end{pmatrix}$$
var with the cramer-Rao lower bound for $P_{xi}(k;p)$?
(8 marks)
c) Given that $y_{1} = 2.3, y_{2} = 1.9$ and $y_{3} = 4.6$ is a random sample from:
$$f_{r}(y;\theta) = \frac{y^{3}e^{-\frac{y}{\theta}}}{6\theta^{4}} \quad y \ge 0$$
Calculate the maximum likelihood estimate for
(6 marks)$$

 $g\Theta(\theta|w=w)$ **d)** Let be the posterior distribution for the unknown parameter . If the loss function

 $\hat{\theta} \quad L[\theta, \theta] = |\theta - \theta|$ associated with is then the Bayes estimate for is the median of go($\theta | w = w$) Give proof to the above statement. (9 marks)

Question Two

a) By definition the geometric mean of a set of n numbers is the nth root of their product. Let Y_1 and Y_2 be a random sample of size two from the pdf

$$f_r(y;\theta) = \frac{1}{\theta}e^{-\frac{y}{\theta}}, \quad y > 0$$

where $\begin{array}{c} \theta \\ \text{is an unknown parameter. Find an unbiased estimator for } \end{array} \begin{array}{c} \theta \\ \text{based on the sample's} \\ \sqrt{y_1 y_2} \end{array}$

geometric mean

b) Suppose that 6.5, 9.2, 9.9 and 12.4 constitute a sample of size four from the pdf

$$f_r(y;u) = \frac{1}{\sqrt{2\pi}(0.8)} e^{\frac{-1}{2}\left(\frac{y-\mu}{0.8}\right)^2} -\infty < y < \infty$$

data points? (at 955 confidence level) **Question Three**

a) An experimenter has reason to believe that the pdf describing the variability in a certain type of measurement is the continuous pdf:

$$f_r(y;\theta) = \frac{1}{\theta^2} y e^{-\frac{y}{\theta}} \qquad 0 < y < \infty, \quad 0 < \theta < \infty$$

(10 marks)

(9

what values of u are believable in the light of the four

(10 marks)

Five data points have been collected 9.2, 5.6, 18.4, 12.1 and 10.7. Find the maximum likelihood θ estimate for (9 marks)

b) Based on the data below, it is hypothesized that x has a Poisson distribution

	Observed
Number c	of Frequency
major change	S
0	237
1	90
2	22
3	7
	356

$$Px = \frac{e^{-\lambda}\lambda^k}{k!}$$

Confirm that

can provide an adequate fit to these 356 observations (11 marks)

Question Four

a) Suppose that $y_1 = 0.42$, $y_2 = 0.10$, $y_3 = 0.65$, $y_4 = 0.23$, $y_5 = 0.41$ is a random sample of size four from the pdf:

$$f_r(y;\theta) = \theta y^{\theta-1} \qquad 0 \le y \le 1$$

 θ Find method of moments estimate for

b) A random sample of size 10, $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$, $x_5 = 0$, $x_6 = 1$, $x_7 = 1$, $x_8 = 0$, $x_9 = 11$ and $x_{10} = 1$; is taken from the probability function:

$$px(k;\theta) = \theta^{k}(1-\theta)^{1-k}, \ k = 0,1; \ 0 < \theta < 1$$

Find the maximum likelihood estimate for

Question Five

$$f_r(y;r,\lambda) = rac{\lambda^r}{(r)} y^{r-1} e^{-\lambda y}$$
, $y > 0$

θ

a) A two parameter gamma pdf

four-hour precipitation. Use the method of moments to estimate r and [use and $E(Y^2) = r(r+1)/\lambda^2$]

] for 36 observation given below: 31.0 0 6.31 4.21 3.69 3.73 11.6 2.82 4.95 0 3.10 3.50 (6 marks)

(9 marks)

(11 marks)

is used to model, the maximum twenty,

			22.2	
3.98	5.64	4.75	2	6.20
4.02	5.51	6.85	7.43	0.67
	13.4			
9.50	0	6.25	5.00	
4.50	9.72	3.42	4.58	
11.4		11.8		
0	6.47	0	4.46	
10.7	10.1			
1	6	0.80	8.00	

b)	(i) Use the data in (a) to get an estimate of the model	(2 marks)
	(ii) Plot a histogram of the data	(6 marks)
	(iii) Superimpose the estimated model on the Histogram and comment on the fit	
		(6 marks)