

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR DECREE IN:
 BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2211: SURVEYING II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of SIX questions. Answer ONE question in each of the THREE sections
Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required
This paper consists of THREE printed pages

Section A

Question One

a) Explain the following terms as used in surveying:
(i) Azimuth
(ii) Bearing
(iii) Traversing
(iv) Reconnaissance
(v) Face left
b) You are provided with the following:

Height of instrument $=1.56 \mathrm{~m}$

At point A
Multiplying constant $(\mathrm{K})=100$
Additive constant (C) $=0$
Reduced level of $\mathrm{A}=1286.00 \mathrm{~m}$

	Staff Reading at	Upper Reading	Lower Reading	Vertical Angle
Bearing AC $=63^{\circ} 15^{\prime} 30^{\prime \prime}$	C	3.457	2.567	$01^{\circ} 34^{\prime} 56^{\prime \prime}$
Bearing AB $=297^{\circ} 56^{\prime} 07^{\prime \prime}$	B	2.895	1.321	$-02^{\circ} 12^{\prime} 23^{\prime \prime}$

Compute:
(i) The reduced level of points B and C
(ii) The horizontal distances AB, AC and BC
(3 marks)
(6 marks)
c) Outline the TWO methods of measurement employed by EDM instruments and explain why one method is more common than the other.
(6 marks)

Question Two

a) Given the coordinates of A and the distance and bearing of line AB as below, calculate the coordinates of point B:
$E A=43964.38 \mathrm{~m}$
$\mathrm{NA}=69866.75 \mathrm{~m}$
Bearing AB = $299^{\circ} 58^{\prime} 46^{\prime \prime}$
Distance AB = 1325.64m
b) Three fixed points A, B and C were observed from a point X inside the triangle ABC , the measured angles being:

A x B = $106^{\circ} 53^{\prime} 20^{\prime \prime}$
B x C $=112^{\circ} 29^{\prime} 40^{\prime \prime}$
The coordinates of A, B and C are:

Point	$\mathrm{N}(\mathrm{m})$	$\mathrm{E}(\mathrm{m})$
A	37032.6	15050.1
B	41121.8	22984.6
C	29974.3	29538.4

Find the coordinates of X and the bearing from X to A and from B to X .
(15 marks)

Section B

Question Three

a) State and outline the functions of any SIX components of a theodolite.
b) The additive constant of a theodolite employed in tacheometry is 0 . The instrument was set up above datum over BM 60.000 m and the height of instrument (H.I) was 61.416 m above datum assuming the
multiplying constant of the instrument to be 100, calculate the reduced levels of the stations $1,2,3$ from the following observations:

Station	Lower Stadia	Middle	Upper Stadia	Vertical Angle
1	0.45	1.035	1.620	$+5^{\circ} 14^{\prime} 00^{\prime \prime}$
2	0.861	11.269	1.680	$+7^{\circ} 23^{\prime} 00^{\prime \prime}$
3	1.185	1.788	2.400	$+8^{\circ} 12^{\prime} 00^{\prime \prime}$

c) Outline types of equipment used in linear measurement and state the advantages and disadvantages of each.
(5 marks)

Question Four

From the data given in table below, which refers to the centre point of the triangle shown in the figure below (not to scale), compute the coordinate of point P after adjusting the angles by equal ship.
(20 marks)

Observed Angles	Observed Angles	Point	E(cm)	N(cm)
PEC $6^{\circ} 07^{\prime} 38^{\prime \prime}$	EPC $52^{\circ} 10^{\prime} 11^{\prime \prime}$	C	391809.25	210247.72
CPD $58^{\circ} 27^{\prime} 46^{\prime \prime}$	PDC $16^{\circ} 32^{\prime} 22^{\prime \prime}$	D	394479.12	213604.13
ECP $111^{\circ} 41^{\prime} 59 "$	DEC $18^{\circ} 50^{\prime} 25^{\prime \prime}$			
DCE $143^{\circ} 17^{\prime} 51^{\prime \prime}$				

Section C

Question Five

A closed-loop traverse ABCDA was run around an area and the following observations were made:

Station		Length (m)	Included Angle	W.C.B
A		187.4	$86^{\circ} 31^{\prime} 02^{\prime \prime}$	$140^{\circ} 11^{\prime} 40^{\prime \prime}$
	B			
B		382.7	$80^{\circ} 59^{\prime} 34^{\prime \prime}$	
	C			
C		106.1	$91^{\circ} 31^{\prime} 29^{\prime \prime}$	
	D			
D		364.8	$100^{\circ} 59^{\prime} 15 "$	
	A			

Question Six

a) Outline layout of triangles in triangulation.
b) The bearings of two inaccessible stations A and B taken from station C were 225000^{\prime} and 153026 , respectively. The coordinates of A and B were as below:

Station	Eastings (m)	Northings (m)
A	300	200
B	400	150

Compute the independent coordinates of C
(10 marks)

