THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE UNIVERSITY EXAMINATIONS
 DEPARTMENT OF MATHEMATICS AND PHYSICS

EXAMINATION FOR THE DEGREE OF B. Sc/ B. Eng/ B. Tech IN
ELECTRICAL AND ELECTRONICS, MECHANICAL AND AUTOMOTIVE, BUILDING AND CIVIL ENGINEERING, AND INFORMATION TECHNOLOGY SPH 2171/APS 4102: PHYSICS II EXAM DATE: DECEMBER, 2011
TIME: 2HOURS

Instructions to Candidates

Answer Question ONE and any other TWO questions.
Take:
Electronic charge $=1.6 \times 10^{-19} \mathrm{C}$
Permittivity of free space $=8.854 \times 10^{-12} \mathrm{C} /\left(\mathrm{Nm}^{2}\right)$

$$
4 \pi \times 10^{-7} N A^{-2}
$$

Permeability of free space=
Mass of electron, $\mathrm{Me}=9.11 \times 10-31 \mathrm{~kg}$

Question One (30 Marks)

a) State Coulomb's Iaw (2 marks)
b) A positive charge q_{1} interacts with another positive charge q_{2} and a negative charge q_{3} as shown in the diagram below.

If $q_{1}=2.0 \mu \mathrm{C}, \mathrm{q}_{2}=5.0 \mu \mathrm{C}, \mathrm{q}_{3}=-3.5 \mu \mathrm{C}$ and $\mathrm{a}=30 \mathrm{~cm}$, find the magnitude and direction of the resultant force exerted on q_{1}. (5 marks)
c) Draw a Wheatstone bridge and explain how it can be used for measuring an unknown
resistance.
(6 marks)
d) Derive the expression of capacitance of a cylindrical capacitor. (6 marks)
e) State Ampere's law. (2 marks)
f) The figure below shows a resistive circuit. Given that $R_{1}=100 \Omega, R_{2}=50 \Omega$, $\mathrm{R}_{3}=75 \Omega$, and $\mathrm{E}=6 \mathrm{~V}$

Find:
i) the effective resistance of the circuit
(2 marks)
ii) the current flowing through R3 resistor (2 marks)
iii) the potential difference (pd) across R2 (2 marks)
g) Define "half-life" of a radionuclide and express it in terms of the decay constant, λ. (3 marks)

QUESTION 2 (20 Marks)

a) State the principle of superposition of electric fields (2 marks)
b) An electric dipole has a distance of separation between the charges as $2 a$. Find an expression for electric field at a point P, which is at a distance $y \gg a$, on the central axis perpendicular to the dipole orientation (5 marks)
c) If a third charge $+q$ is introduced at point P in (b) above, calculate the total electric potential energy of the system of charges. Take $q=10 \mu \mathrm{C}, \mathrm{a}=$ 2 cm and $\mathrm{y}=4 \mathrm{a}$.
d) A rod of length has a uniform positive charge per unit length and a total charge Q. Calculate the electric field and potential at a point P that is located along the axis of the rod at a distance a from one end. (9 marks)

QUESTION 3 (20 Marks)

a) Define electric current and state its SI unit (2 marks)
b) Show that the average current flowing through a conductor of uniform

$$
I_{a v}=n q v_{d} A
$$

cross-sectional area A is given by . Define each term used in your working. (5 marks)
c) Use the circuit diagram below to determine the magnitude and direction of the current through the $4 \Omega, 6 \Omega$, and the 2Ω resistors respectively

(10 marks)
d) State the factors affecting the magnitude of the induced e.m.f in electromagnetic induction
(3 marks)

QUESTION 4 (20 Marks)

a) State
(2 marks)
Lenz's
Iaw
b) Explain self induction and outline the factors affecting the inductance of an inductor
(5 marks)
c) A 30 mH inductor is connected in series with a 6Ω resistor and a switch S . If the Emf source across the circuit is 12 V , find:
i) the time constant of
(2 marks)
ii) the current in the circuit at 2.00 ms
(3 marks)
iii) the p.d. across the resistor at 2.00 ms (3 marks)
iv) the total energy stored by the inductor when it is fully charged (3 marks)
d) State the significance of Ampere's law (2 marks)

QUESTION 5 (20 Marks)

a) Explain the effect of a dielectric placed between the plates of a capacitor (4 marks)
b) Three capacitors are connected in series, find the expression for the effective capacitance in the circuit (3 marks)
c) An electron is released from rest in a uniform electric field that has magnitude of $5.6 \times 10^{4} \mathrm{~V} / \mathrm{m}$. The electron undergoes a displacement of 0.50 m in the direction opposite to the electric field. Find:
i) the change in electric potential between the two points (2 marks)
ii) the change in P.E of the electron-field system for this displacement (2 marks)
iii) the final speed of the electron (2 marks)
d) Briefly discuss how radiations (x-rays and gamma rays) can be used in measuring thickness of metal sheets (4 marks)
e) Describe the 'causes' of radioactivity (3 marks)

