

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SC/TEC/ENG IN AUTOMOTIVE, BUILDING & CIVIL ENGINEERING & COMPUTER TECHNOLOGY

SPH 2170/APS 4101: PHYSICS I/PHYSICS FOR ENGINEERS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY/MARCH 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions This paper consist of **FOUR** printed pages

Take:

Speed of light in a vacuum= 3.0×10^8 m/s Gravitational acceleration, g=9.81 m/s² $\eta = 1.00$

Refractive index of air,

Question 1 (30 Marks)

- a) Distinguish between the following:
 - i) A dot and a cross product of two vectors. (2 marks)
 - ii) Coefficient of static friction and coefficient of kinetic friction. (2 marks)
- b) Derive the **three** equations that describe uniformly accelerated motion. (8 marks)
- c) Use dimensional analysis to test the validity of the following expression of period T in a simple pendulum. l is the length of the string and g is the measure of gravitational field strength.

$$T = 2\pi \sqrt{\frac{l}{g}}$$

(3 marks)

d)	$\vec{A} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}, \vec{B} = -\mathbf{i} + 4\mathbf{j} + 2\mathbf{k} \vec{C} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ Three vectors are given by , and	. Find:			
	i) The cross product $\vec{A} \times \vec{B}$. $\vec{A} \times \vec{B} = \vec{C}$	(3 marks)			
	ii) The component of along .	(4 marks)			
e)	State the conditions necessary for a body to be in equilibrium.	(2 marks)			
f)	 State the effect of doubling the amplitude of a simple harmonic oscillator on: i) The period ii) The spring constant iii) The total energy iv) The maximum acceleration. 	(1 mark) (1 mark) (1 mark) (1 mark)			
g)	State two conditions necessary for total internal reflection to occur.	(2 marks)			
	Question 2 (20 marks)				
a)	Explain what is meant by Brewster's angle.	(2 marks)			
b)	Light is incident from air on glass with an index of refraction of 1.5. Find the ang reflected be fully polarized.	le at which the (3 marks)			
c)	A projectile is fired from a level ground at an angle θ above the horizontal. $H/R = \frac{1}{4}$	an heta			
	i) Prove that the ratio of the maximum height H to the range is given by	(4 marks)			
	$\begin{array}{cc} \theta & H = R \\ \text{ii) For what angle does } ? \end{array}$	(2 marks)			
	iii) If the initial velocity of the projectile has vertical and horizontal components of m/s respectively, determine its time of flight and the range	f 40 m/s and 20 (6 marks)			
d)	A wheel rotates at a constant angular velocity of the wheel? Explain your answer. ω about a fixed axis. What is the stat	e of equilibrium (3 marks)			
Question 3 (20 marks)					

a) A 5.0 kg block on an inclined plane with an elevation angle of 37[°] is acted on by a horizontal force \vec{F}

with magnitude 50 N.

- (5 marks) b) Distinguish between stress and strain on a material. (2 marks)
- c) Sketch a graph of stress (y axis) against strain of a material. Discuss the nature of the graph.
- (5 marks) d) A bar has dimensions 1 cm by 1 cm by 20 cm. It is subjected to a 10,000 N tension force along its cross section and it stretches by 0.01cm. Determine its Young's modulus. (4 marks)

Question 4 (20 marks)

i)

- a) Explain what is meant by linear expansivity of a material. (2 marks)
- b) Briefly explain how temperature can be regulated using a bi-metallic strip.
 - (3 marks)
- c) Briefly describe the two types of measurement errors and state how each can be minimized
 - (4 marks)

d) The system shown below is in equilibrium. If M=2.0kg, find the tension in string AB and string BC. (5 marks)

e) The equation of a transverse wave traveling along a string is given by $y = (2.0mm)\sin[(20m^{-1})x - (600s^{-1})t]$

i)	Amplitude	(1 mark)
ii)	Frequency	(1 mark)
iii)	wavelength	(1 mark)
iv)	velocity of the wave	(1 mark)
v)	The maximum transverse speed of a particle in the string.	(2 marks)

Question 5 (20 marks)

a) A wheel of radius 0.250m, which is moving initially at 43.0m/s, rolls to a stop in 225m. The wheel's rotational inertia is 0.155kgm² about its central axis. Calculate the magnitudes of:

i)	Its linear acceleration	(3 marks)
ii)	Its angular acceleration	(2 marks)
iii)	The torque about the central axis due to friction on the wheel	(2 marks)

ω

b) Show that the radial acceleration for a body undergoing circular motion with an angular velocity is

$$\bar{\mathbf{a}} = -\frac{v^2}{r}\bar{\mathbf{r}}$$

given by

c) Suppose the co-ordinate of a particle of a particle moving along the x-axis is given as a function of $x(t) = 7.8 + 9.2t - 2.1t^2$ time t by where is in metres and is in seconds. Find

© 2012 The Mombasa Polytechnic University College

(6 marks)

	t =	= 2 t =	= 4			
i)	The average velocity between	and	seconds	(3 marks)		
<i>t</i> = 3						
ii)	The velocity and acceleration at	secon	nds	(4 marks)		