## THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE <br> (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN INFORMATION COMMUNICATION TECHNOLOGY

SPH 2102/SPH 2173/SPH 2170/SPH 4101 PHYSICS 1/PHYSICS FOR ENGINEERS

## END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 <br> TIME: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table
- Non-Programmable Calculator

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Where necessary, use the following constants $\mathrm{g}=9.81 \mathrm{~ms}^{-2}$
Specific heat capacity of water, $\mathrm{Cw}=4200 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$
Specific heat capacity of Copper $\mathrm{Cc}=400 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Latent heat of ice $\mathrm{Li}=340 \mathrm{KJg}^{-1}$

## Question One (Compulsory)

a) State TWO base quantities and two derived quantities.

$$
S=u t+1 / 2 a t^{2}
$$

b) Show that the expression is dimensionally correct. Where $s$ has units of length, where u is velocity, a is acceleration and t is time.
c) Differentiate between scalar and vector quantities, giving examples of each.
d) Define the following terms as used in waves:
(i) Simple harmonic motion
(ii) Periodicity
e) State Newton's $2^{\text {nd }}$ and $3^{\text {rd }}$ Laws of motion.

$$
\begin{equation*}
x(t)=\left(3 t^{2}-2 t+3\right) m \tag{2marks}
\end{equation*}
$$

f) An object moves along the $x$-axis according to the equation . Determine:

$$
t=2 \mathrm{sec} \quad t=\mathrm{sec}
$$

(i) Average velocity between and
(2 marks)
(ii) Average acceleration between and
g) (i) Define centripetal acceleration.
(ii) Explain why a body moving at uniform speed in circular path is said to move at different velocities.
h) Differentiate between stress and strain.
i) (i) State THREE scales used in measuring temperature.
(ii) Define heat capacity of a substance.
j) (i) Define coherent derived units and give two examples.
(ii) Define the following terms:
(I) Candela
(II) Ampere
(2 marks)

## Question Two

a) A car moving with a velocity $10 \mathrm{~ms}^{-1}$ starts to accelerate uniformly at $2 \mathrm{~ms}^{-2}$. Calculate its velocity after travelling at $2 \mathrm{~ms}^{-2}$. Calculate its velocity after travelling 200m.
(3 marks)
b) Consider a body projected as shown in the diagram below:

## Figure 1

If it passes through points $A$ and $B$ both when it is rising and again when it is falling. The point $B$ is at a height h above point A . Let $\mathrm{T}_{\mathrm{A}}$ be the time interval that it takes as it passes point A on its way up and down and $\mathrm{T}_{\mathrm{B}}$ the time interval the body takes to rise and fall through B . Use this information to show that:

$$
g=\frac{8 H}{T_{A}^{2}-T_{B}^{2}}
$$

If g is the acceleration due to gravity.
c) A traffic light weighting 122 N hangs from a cable tied on two other cables fastened to a support. These upper cables are not so strong as the vertical cable and will break if the tension in the exceeds 100 N . Determine $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ and explain whether the cable breaks.
(12 marks)

$$
\mathrm{T}_{1}
$$

## Question Three

a) An object of mass 0.3 kg is attached to the end of a string and supported on a smooth horizontal surface. The object moves in a horizontal circle of radius 0.5 m with a constant speed of $2 \mathrm{~m} / \mathrm{s}$. Calculate:
(i) The centripetal acceleration.
(ii) The tension in the string.
b) A metal bar is of length 2 m and has an average cross section area of $40 \mathrm{~mm}^{2}$ when a tensile force of 80 kN is applied it extends by 0.046 mm . calculate:

| (i) | The stress | (3 marks) |
| :--- | :--- | :--- |
| (ii) | The strain in the metal bar. | (2 marks) |

c) (i) Define the following terms as used in waves.
(ii) Wavelength
(ii) A progressive wave travels a distance of 18 cm in 1.5 s . If the distance between successive crests is 60 mm . Calculate:
(i) The frequency
(2 marks)
(ii) The periodic time s, the wave motion.
(iii) Show that equation of a simple harmonic motion is x -direction as for a spring on mass is given as:

$$
\frac{d^{2} x}{d t^{2}}+w_{0}^{2} x=0
$$

## Question Four

a) (i) 0.05 kg block of metal is heated to $200^{\circ} \mathrm{C}$ and then dropped into a copper calorimeter of mass 0.2 kg containing 0.4 kg of water which is initially at $200^{\circ} \mathrm{C}$. If the final equilibrium temperature of the mixed system is $22.4^{\circ} \mathrm{C}$ find the specific heat capacity of the metal.
(ii) How much heat energy is required to convert 100 g of ice at $-10^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$ assuming no heat is lost to the surrounding the ice is in a 50 g copper calorimeter.
(4 marks)
b) (i) What is surface tension?
(2 marks)
(ii) A needle has length of 3.2 cm . When placed of water it floats if it is not very heavy. What is the weight of the heaviest needle that can be used in this demonstration. Take $\mathrm{Y}=0.073 \mathrm{Nm}^{-1}$
(5 marks)

## Question Five

a) Distinguish between static and kinetic friction.

$$
\mu_{k}=0.25
$$

b) A block slides on a rough incline for which as shown in the figure 3 below. Find the velocity after it slides 1 m along the incline given that its initial velocity is 4 ms 1 .
(i) Up the incline
(ii) Down the incline

Figure 3

$$
\mu_{s}=0.2
$$

c) A block of mass $\mathrm{m}=1.2 \mathrm{~kg}$ is held against rough wall $(U s=0.2)$ by a force F directed at an $\alpha=10^{\circ}$
angle above the horizontal as shown in figure below. What is the minimum value of F for the block to remain stationary?
(7 marks)

Figure 4

