

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 12J)

EBC 2302: SOIL MECHANICS II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown

Question One

- a) Name and explain the TWO shear strength parameters
- b) The data in Table 1 refers to triaxial tests performed on an undistributed soil samples. The load dial calibration factor is 1.4N per division. Each sample is 75mm long and 37.5mm diameter. Plot a graph to determine the shear strength parameters (11 marks)

TEST	CELL PRESSURE	AXIAL LOAD DIAL		
	(KN/m^2)	READING (DIVISIONS AT		
		FAILURE)		
1	50	65		
2	150	105		
3	250	146		

- c) Briefly explain the following conditions while testing soil for shear strength:
 - (i) Undrained
 - (ii) Drained

Question Two

- **a)** With aid of a sketch, describe the translational slides.
- **b)** The bank of a canal has the profile shown in figure 1. The material is homogeneous clay of density 2000kg/m³, cohesion 20KN/m² and the angle of shearing resistance zero. For the trial slip circle shown, the area ABCDE is 200m² and the centroid is at G. Find for each of the following conditions the factor of safety for this slip circle:
 - (i) If the water in the canal is level with the top of the bank
 - (ii) If the canal is empty In both cases, allow for a tension crack 3m deep which may be filled with water.

F

(15 marks)

Question Three

(5 marks)

(5 marks)

(4 marks)

a) With the aid of a sketch, describe General shear failure mode under footings. (7)

b) A strip footing 2.5m wide is to be constructed at a depth of 3m below the ground level. Calculate the safe bearing capacity of the soil given the following data:

0 1 5		0
Cohesion of soil	=	65KN/m ²
Density of the soil	=	1800kg/m ³
Factor of safety	=	3

Question Four

- a) Explain the following terms as applied in lateral earth pressure:
 - (i) Elastic equilibrium
 - (ii) Plastic flow
- **b**) Figure 3 shows a retaining wall supporting soil on its back. Determine the following:
 - (i) The shear force in KN at the base of the wall so as to prevent its movement away from the backfill.
 - (ii) The height of total horizontal thrust above the base Figure 3

- **Question Five**
- a) Name and define the FOUR categories of bearing capacity.
- b) In a series of unconsolidated-undrained triaxial tests on specimens of a fully saturated clay, the results obtained are given in table 2. Determine the shear strength parameters. **(8 marks)**

ALL-ROUND PRESSURE (KN/m ²)	200	400	600
PRINCIPLAL STRESS DIFFERENCE (KN/m ²)	222	218	220

c) State FOUR assumptions made in Rankine's theory of earth pressure.

(4 marks)

(7 marks)

(4 marks)

(16 marks)

(8 marks)