

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13J)

EBC 2206: SOIL MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: JULY 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator
- Mathematical Table

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages **Question One**

- a) Outline negative effects caused by clay mineral content to a constructed site. (6 marks)
- b) Explain the following terms:
 - (i) Coefficient of uniformity
 - (ii) Saturated dry density
- c) A student tests a clayey SAND and finds its saturated density to be 1.950Mg/m³, moisture content being 24.5%. Use a soil model to determine:
 - (i) Porosity
 - (ii) Dry density
 - (iii) Particle specific gravity
 - (iv) Bulk density of the soil if the soil is 75% saturated.

Question Two

- **a)** Briefly explain the following terms:
 - (i) Flocculation as applied to clayey sediments
 - (ii) Two aspects of British soil classification system
 - (iii) Plasticity index with respect to soil classification.
- **b)** Result of particle size distribution investigation area:

Particle size	50	37.	20	14	10	6.3	5	3.3	2.0	1.1	0.42	0.21	0.15	0.006	0.01
(mm)		5						5		8	5	2	0	3	
Mass	0	15.	17	10	11	33	33.	81	18	31	32.5	9	8	5.5	5
retained (g)		5					5								

c) The soil in 2(b) was found to be organic and results for liquid limit test conducted on its five content are:

Test number	1	2	3	4
	4			
Moisture content (%)	9	46	44	43
	1			
Number of blows	1	20	32	41

If plastic limit for the soil was 35%, use figures 2 and 3 as well as results obtained in (b) above to classify the soil.

Question Three

- **a)** State THREE possible causes of errors in soil compaction methods.
- **b)** Outline THREE objectives of compacting soils

(3 marks)

(6 marks)

(10 marks)

(4 marks)

c) Proctor method of test was carried out on a soil sample of specific gravity 2.68 and following results were obtained.

Test Number	1	2	3	4	5
Bulk Density	200	208	211	210	205
(kg/m^3)	5	7	0	0	5
Moisture Content	12.	14.	15.	16.	19.
(%)	8	5	6	8	2

Volume for the mould used in the compaction was 1000cm³

- (i) Draw a compaction graph
- (ii) Determine compaction parameters
- (iii) Determine the following, at the compaction parameters obtained in (c) (ii)
 - Air voids ratio
 - Moisture content

Question Four

- a) A student compacted first three soil samples using 2.5kg rammer. He then used a 4.5kg rammer compact last 3 samples. Explain possible effect that the change could cause. (2 marks)
- b) Compare results obtained from compaction of sandy GRAVEL and clayey SILT when plotted on same axes.
 (4 marks)
- **c)** Outline FOUR factors that affect soil compaction.
- **d)** A silt soil sample was tested in the laboratory in 2 stages. In stages 1 the following results were obtained.

=	12	
=	60	
=	48	
=	1200	
=	800	
se	=	3 minutes, 20 seconds.
	= = = = se	$ \begin{array}{rcrcrc} = & 12 \\ = & 60 \\ = & 48 \\ = & 1200 \\ = & 800 \\ se & = \\ \end{array} $

- (i) Determine the coefficient of permeability
- (ii) In stage 2 of the test, the soil sample was reduced to ³/₄ of its original length. Answer soil sample of permeability 7.5 x 10⁻³mm/s was then added to it and experiment repeated. Determine expected permeability for both layers considering.
 - Vertical flow direction
 - Horizontal flow direction

Question Five

a) Outline FOUR factors that affect permeability of muddy sediments (4 marks)

(5 marks)

(8 marks)

(11 marks)

b) Outline liquid limit determination method in which a standard cone penetrometer is used.

(12 marks)

c) Results of state 1 of a permeability test are as follows:

- Radius of stand pipe (mm)	=	6
- Cross-sectional area of test sample (mm ²)	=	2800
- Length of the sample (mm)	=	50
- Initial water level in stand pipe (mm)	=	1000
- Final water level in the pipe (mm)	=	600
- Time taken for the water level to decrease	=	2 minutes 58 seconds

- (i) Determine coefficient of permeability
- (ii) The test sample in (i) is reduced to one half of its original length and soil of permeability 8.0 x 10-3 mm/s added. Test is repeated for different directions of flow through combined samples. Determine coefficient of permeability considering the following directions:
 - Vertical
 - Horizontal