

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 12M)

EBC 2206: SOIL MECHANICS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One**

b) Briefly describe the pumping tst for unconfined aquifer

a)	Explain THREE factors that influence permeability.	(6 marks)

c) A variable head method was used to test permeability on a soil sample of length 350mm. The water level in a 30mm diameter stand pipe fell from 1600mm to 1000mm after 60 seconds. Determine the coefficient of permeability of the soil if diameter of the sample was 90mm. (7 marks)

Question Two

a) Outline the procedure for carrying out liquid limit using cone penetrometer apparatus

(10 marks)

(6 marks)

(7 marks)

- **b)** Determine the saturation capacity of a soil, given:
 - Bulk density = 1.96g/cc(i)
 - (ii) Specific gravity = 2.75
 - Moisture content = 16%(iii)
- c) Explain the following terms:
 - (i) Fire-grained soils
 - (ii) Coarse-grained soils

Question Three

- a) Define the following terms as applied in soil mechanics:
 - Degree of saturation (i)
 - (ii) Bulk unit weight
 - (iii) Porosity
- **b**) A sample of soil has a mass of 30.6kg when weighed and its volume was found to be 0.0183m³. When dried in an oven the mass was reduced to 27.2kg. If the specific gravity of the soil was 2.65, determine the following:
 - Bulk density (i)
 - (ii) Dry density
 - (iii) Percentage moisture content
 - Percentage air voids (iv)
 - Void ratio (v)
 - Porositv (vi)
 - Critical hydraulic gradient (vii)

Question Four

- a) Outline FOUR main areas where soil mechanics is of great importance. (8 marks)
- **b)** Derive the expression of dry density in terms of density of water, particles specific gravity and void ratio. (6 marks)

(4 marks)

(15 ½ marks)

- c) (i) Define the term "moisture content" as applied to soils.
 - (ii) In a moisture content test for a certain soil, the following data was recorded as shown in table 1.

Mass of Empty Tin (g)	16.24	16.18
Tin + Wet Soil (g)	29.30	27.11
Tin + Dry soil (g)	26.96	25.06

Calculate the moisture content of the soil

Question Five

- **a)** (i) Explain the term "Critical hydraulic gradient" (ii) Distinguish flow lines from equipotential lines
- b) The shear strength of soil was tested under drained conditions using a direct shear box. The results obtained are shown in table 2

TEST NUMBER	1	2	3	4
NORMAL STRESS (KM/m ²)	90	170	305	350
SHEAR STRESS AT FAILURE (KN/m ²)	60	90	120	150

- Use the results to draw the Coulomb diagram on a graph paper (i)
- Determine shear strength parameters for the soil tested. (ii)
- c) Outline THREE factors that affect compaction

(9 marks)

(6 marks)

(6 marks)

(5 marks)