THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING/BUILDING \& CIVIL ENGINEERING YEAR 3, SEM I

SMA 2370: CALCULUS IV

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: FEBRUARY/MARCH 2012
TIME: 2HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer Question ONE (Compulsory) from SECTION A and any other TWO questions from SECTION B
Maximum marks for each part of a question are clearly shown
This paper consists of TWO printed pages

SECTION A (Compulsory)

QUESTION ONE (30 MARKS)

a) State the first mean value theorem for a function of two variables and verify the theorem for $f(x, y)=x^{2} y$ at the point $(5,2)$
$\vec{A}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$, \vec{A}
b) Given
find the curl of curl

$$
f(x)=\sqrt[3]{x}
$$

c) Find a linear expression in x to approximate in the neighborhood of 8 . Use this to find

$$
\sqrt[3]{8.1}
$$

the approximate value of correct to 4 decimal places.
d) A surveyor estimates the area of a triangular plot of land using the formula
where a and b are the lengths of the two sides and C is the included angle.

If the sides are measured to an accuracy of 2% and the angle C measured as 45° is measured to with 1%, calculate approximately, the percentage error in A.

$$
\int_{1}^{2} \frac{d x}{\sqrt{x(2-x)}}
$$

e) Show how to transform the improper integral of the second kind integral
into a proper
(4 marks)

$$
\vec{F}=x y \hat{i}-y^{2} \hat{j}, \quad \vec{F}
$$

f) Given the force find the work done by from $(0,0)$ to $(2,1)$ along the following paths:-

$$
y=\frac{1}{2} x
$$

(i) The straight line

$$
x=0, \quad y=1
$$

(ii) The broken line

Hence determine whether or not $\stackrel{\vec{F}}{\text { is conservative. }}$ (7 marks)

SECTION B (Attempt any TWO questions)

QUESTION TWO (20 MARKS)

$$
2 x-3 y+5 z=19
$$

a) Find the point on the plane that is nearest to the origin, using the method of Lagrange multipliers. Hence determine the distance of the plane from the origin.
b) Obtain the Fourier sine series of period ${ }^{2 \pi}$ which represents f on the interval ${ }^{0, \pi}$ where $f(x)= \begin{cases}\pi, & 0 \leq x \leq \frac{\pi}{2} \\ 0, & \frac{\pi}{2}<x \leq \pi\end{cases}$

QUESTION THREE (20 MARKS)

a) Verify the divergence theorem for the sphere $x^{2}+y^{2}+z^{2}=a^{2} \quad \vec{F}=x \hat{i}+y \hat{j}+2 \hat{k}$ (10 marks)

$$
\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y
$$

b) Verify Green's theorem in the plane for where C is the closed curve of

$$
\begin{equation*}
y=x^{2} \quad y^{2}=x \tag{10marks}
\end{equation*}
$$

the region bounded by and

QUESTION FOUR (20 MARKS

a) State Stoke's theorem
(1 mark)
b) Verify Stoke's theorem for the vector field

$$
\vec{F}=x \hat{i}+x \hat{j}+2 x y \hat{k}
$$

$x^{2}+y^{2}+z^{2}=4, z \leq 0$ using the hemisphere

QUESTION FIVE (20 MARKS)

$$
\oint_{S} \int \vec{A} \cdot \hat{n} d s \quad \vec{A}=z \hat{i}+x \hat{j}-3 y^{2} z \hat{k}
$$

$$
x^{2}+y^{2}=16
$$

a) Evaluate where and S is the surface of the cylinder included in the first octant between $\mathrm{z}=0$ and $\mathrm{z}=5$.
(9 marks)If

$$
z=(x+y)^{2} \quad x=r \cos \theta \text { and } \quad y=r \sin \theta \text { show that } \quad 2 r^{2} \frac{\partial^{2} z}{\partial r^{2}}+\frac{\partial^{2} z}{\partial \theta^{2}}=4 r^{2}
$$

