THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECRICAL \& ELECTRONIC ENGINEERING (YR IV, SEM I)

SMA 2480: COMPLEX ANALYSIS

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer booklet
Use SMP four figure mathematical tables and non-programmable electronic calculators.
This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
This paper consist of THREE printed pages

QUESTION ONE (30 marks) compulsory.
a) Explain what is implied by the terms
(i) Analytic function.
(2 marks)
(ii) Essential singularity
(2 marks)

$$
z=2 i \quad f(z)=\frac{z^{2}+4}{(z-2 i)(z+3)}
$$

b) Show that is not a pole for
c) An alternating voltage of $240 \mathrm{~V}, 50 \mathrm{~Hz}$ is connected across an impedance of

Determine the magnitude of the impedance and its phase angl

$$
u=x^{3}-3 x y^{2} \quad v \quad u \quad u+i v
$$

d) Given is harmonic find the harmonic conjugate of hence write in terms of z

$$
\int_{1+4 i}^{2+6 i}\left(3 x^{2} y+2 x y^{2}-3 y+2\right) d z
$$

$$
\begin{aligned}
& \text { along the straight line joining } \quad \text { to } \quad \begin{array}{r}
.(8 \text { marks }) \\
w_{1}=i, w_{2}=\infty,
\end{array}
\end{aligned}
$$

f) Determine the linear fractional transformation T that maps $z_{1}=1, z_{2}=0, z_{3}=-1$ onto

$$
w_{3}=1,
$$

respectively.

QUESTION TWO (20 MARKS)

$$
z=6-8 i
$$

a) Write down the equivalent polar form of

$$
f(z)=\cos (\bar{z})+5^{-2}
$$

b) Show that is not analytic.
(7 marks)

$$
\int_{c} \frac{3 z+2}{\left(z^{2}+1\right)^{3}} d z \quad|z-2 i|=2
$$

c) Evaluate where c is the circle using cauchy's integral formula. (10 marks)

QUESTION THREE (20 MARKS)

$$
w=f(z)=\frac{(2 z+1)}{(3 z-2)} \quad z \neq \frac{2}{3} \quad w \quad z=1+i
$$

a) If where find the value of corresponding to . (4 marks)

$$
\int_{c} \frac{2 z^{3}+3 z+1}{(z+2)^{2}(z-3)} d z
$$

b) Evaluate where c is any curve enclosing both $\mathrm{z}=-2$ and $\mathrm{z}=3$. (8 marks)

$$
\int_{1+3 i}^{2+6 i}\left(4 z^{2}+7 z\right) d z
$$

c) Evaluate
along the straight line from $1+3 i$ to $2+3 i$ then from $2+3 i$ to $2+6 i$. (8marks)

QUESTION FOUR (20 MARKS)

$$
f(z)=\frac{1}{z^{2}+2 z+5}
$$

a) Find the poles of the function then determine the residues at the poles. (6 marks)

$$
f^{\prime}(z)=\frac{1}{2 \pi i} \int_{c} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

b) Prove that

$$
f(z)=z^{3}+2 z+5-3 i
$$

c) Show that the function is analytic everywhere on the z-plane. (6 marks)

QUESTION FIVE (20 MARKS)

$$
\oint_{c} \frac{2 z^{2}+1}{z^{2}+1} d z \quad c:|z+i|=2
$$

a) Find the integral of

> where

$$
f(z)=\frac{z^{3}-4 z^{2}+2 i}{(z-3 i)^{3}}
$$

at its singularities hence evaluate simple closed curve containing all singularities of $\mathrm{f}(\mathrm{z})$.
where c is any
marks) THE END

