



# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

## Faculty of Applied & Health Sciences

### DEPARTMENT OF MATHEMATICS & PHYSICS

## UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECRICAL & ELECTRONIC ENGINEERING (YR IV, SEM I)

## SMA 2480: COMPLEX ANALYSIS

### SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: FEBRUARY/MARCH 2012 TIME: 2 HOURS

### **Instructions to Candidates:**

You should have the following for this examination

Answer booklet
Use SMP four figure mathematical tables and non-programmable electronic calculators.

This paper consists of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
This paper consist of THREE printed pages

### **QUESTION ONE (30 marks) compulsory.**

| a) | Explain what is implied by the terms                                       |                                                                 |             |             |              |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|-------------|--------------|
|    | (i) Analytic fu                                                            | inction.                                                        |             |             | (2 marks)    |
|    | (ii) Essential si                                                          | ngularity                                                       |             |             | (2 marks)    |
|    | z = 2i                                                                     | $f(z) = \frac{z^2 + 4}{\left(z - 2i\right)\left(z - 2i\right)}$ | +3)         |             |              |
| b) | Show that is                                                               | s not a pole for                                                |             |             | (3 marks)    |
| ,  |                                                                            | L                                                               |             | (60 - 10)   | $(0j)\Omega$ |
| c) | An alternating voltage of 240V, 50Hz is connected across an impedance of . |                                                                 |             |             |              |
|    | Determine the magnitude of the impedance and its phase angl                |                                                                 |             |             | (2 marks)    |
|    | $u = x^3 - 3xy$                                                            | $v^2$                                                           | v u         |             | u + iv       |
| d) | Given                                                                      | is harmonic find the harmonic c                                 | onjugate of | hence write | in terms of  |
|    | Z                                                                          |                                                                 |             |             |              |
|    | •                                                                          |                                                                 |             |             | (6 marks)    |

e) Evaluate  

$$\int_{1+4i}^{2+6i} (3x^2y + 2xy^2 - 3y + 2)dz$$
along the straight line joining  

$$i + 4i \quad 2+6i$$
to
$$i = i, w_2 = \infty,$$

f) Determine the linear fractional transformation T that maps  $z_1=1$ ,  $z_2=0$ ,  $z_3=-1$  onto

$$w_3 = 1$$
,  
respectively. (7 marks)

#### **QUESTION TWO (20 MARKS)**

z = 6 - 8ia) Write down the equivalent polar form of . (3 marks)

$$f(z) = \cos\left(\bar{z}\right) + 5\bar{z}^2$$

b) Show that

 $\int_{c} \frac{3z+2}{\left(z^2+1\right)^3} dz$ |z - 2i| = 2where c is the circle using cauchy's integral formula. (10 marks)

is not analytic.

c) Evaluate

#### **QUESTION THREE (20 MARKS)**

$$w = f(z) = \frac{(2z+1)}{(3z-2)} \qquad z \neq \frac{2}{3} \qquad w \qquad z = 1+i$$
  
a) If where find the value of corresponding to . (4 marks)

$$\int_{c} \frac{2z^{3} + 3z + 1}{(z+2)^{2}(z-3)} dz$$

b) Evaluate where c is any curve enclosing both z = -2 and z = 3. (8 marks)

$$\int_{1^{+3i}}^{2+6i} (4z^2+7z)dz$$

c) Evaluate along the straight line from 1+3i to 2+3i then from 2+3i to 2+6i.

#### (8marks) **QUESTION FOUR (20 MARKS)**

$$f(z) = \frac{1}{z^2 + 2z + 5}$$

a) Find the poles of the function

then determine the residues at the poles. (6 marks)

(7 marks)

$$f'(z) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{(z - z_0)^2} dz$$

b) Prove that

$$f(z) = z^3 + 2z + 5 - 3i$$
 (8 marks)

c) Show that the function  $f(z) = z^3 + 2z + 5 - 3i$  is analytic everywhere on the z-plane. (6 marks)

#### **QUESTION FIVE (20 MARKS)**

c) Show that the

a) Find the integral of  $\int_{c}^{0} \frac{2z^{2} + 1}{z^{2} + 1} dz$  c: |z + i| = 2(5 marks)  $f(z) = \frac{z^{3} - 4z^{2} + 2i}{(z - 3i)^{3}}$   $\int_{c}^{z} f(z) dz$ b) Find the residue of at its singularities hence evaluate where c is any simple closed curve containing all singularities of f(z). (8 marks)

$$\lim_{z \to (1+i)} \frac{z^2 - z + 1 - i}{z^2 - 2z + 2} = 1 - \frac{1}{2}i$$
(7)

marks) THE END