THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT)
(A Centre of Excellence) Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL AND AUTOMOTIVE ENGINEERING

SMA 2374: LINEAR AND BOOLEAN ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One (30 marks)
a) Define the following terms as used in linear and Boolean Algebra
i) Simple proposition
ii) Singular matrix
iii) A vector
b) Find the parametric equation for the line through the points $\mathrm{P}(-3,2,-3)$ and $\mathrm{Q}(1,-1,4)$ (4 marks)
c) Find the value of a if the following matrix is singular.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & -9 & 2 \\
1 & 2 & 0 \\
-2 & 3 & 1
\end{array}\right] \\
& A U(A \cap B)=A \cup B
\end{aligned}
$$

d) Show that
(4 marks)

$$
\vec{A}=a i-2 j-2 k \quad \vec{B}=6 i+3 j+2 k
$$

e) Find the value of a if the vectors and are perpendicular.
f) (i) Find the determinant of the matrix.

$$
A=\left[\begin{array}{lll}
a 11 & a 12 & a 13 \\
a 21 & a 22 & a 23 \\
a 11 & a 12 & a 13
\end{array}\right]
$$

in which row 1 row 3 are the same.
(ii) What conclusion can you draw from your answer above?
(2 marks)

$$
A=2 i-3 j+7 k
$$

g) Find the direction of vector of

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)

$$
y=\tan ^{-1} x \quad\left(1, \frac{\pi}{4}\right)
$$

a) Find the unit vectors that are tangent and normal to curve

$$
\underset{\sim}{a}=4 i+3 k \quad \underset{\sim}{b}=-2 i+j+5 k \quad|2 \underset{\sim}{a}+3 \underset{\sim}{b}|
$$

b) If and find
c) Find the angle between the two planes
d) If $A=i-2 j-2 k \quad B=6 i+3 j+2 k$,
and

$$
\begin{equation*}
3 x-6 y-2 z=7 \quad 2 x+y-2=5 \tag{3marks}
\end{equation*}
$$

d) If and find the projection vector of A onto B.

Question Three (20 marks)

a) Define the following terms:
i) Proposition
(2 marks)
ii) Conjecture (2 marks)

$$
p \wedge q \rightarrow r v s \Rightarrow(\mathrm{P} \wedge \mathrm{q}) \rightarrow r v^{\sim} s
$$

b) Construct a truth table for the statement:

(10 marks)

$$
\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{~B}^{\prime}
$$

c) Show that

Question Four (20 marks)

a) Define the following terms as used in linear algebra.
i) Matrix
(1 mark)
ii) Zero matrix
(1 mark)
iii) Diagonal matrix
(1 mark)
b) (i) State the Cramer's rule for a 3×3 matrix.
(ii) Using Cramer's rule solve the matrix equation.

$$
\begin{aligned}
& x+2 y+4 z=4 \\
& 2 x+z=3 \\
& 3 y+z=2
\end{aligned}
$$

c) Use Gauss-Jordan elimination method to solve the equation.

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}=0 \\
& -x_{1}+x_{2}-x_{3}=0 \\
& 10 x_{2}+25 x_{3}=90 \\
& 20 x_{1}+10 x_{2}=80
\end{aligned}
$$

Question Five (20 marks)
a) Given that

$$
\cap(\mathrm{A})=3, \cap(\mathrm{~B})=2 \quad \cap(\mathrm{~A} \cap \mathrm{~B})=1
$$

$\cap\left(A^{\prime}\right)$ and . Find:
i)
$\cap\left(A^{\prime} \cap B\right)$
ii)
$\cap(A \cup B)$
iii)

$$
A=\left(\begin{array}{cc}
-5 & 2 \\
2 & -2
\end{array}\right)
$$

b) Calculate the Eigen values of the matrix A and its corresponding Eigen vectors if

$$
P(2,-9,5) \quad \underline{v}=2 j+3 k
$$

c) Find the parametric and Cartesian equation for the line through , parallel to

$$
\vec{A}=2 i+j-k \quad \vec{B}=i-j+2 k
$$

d) Find a unit sector perpendicular to both and

