

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF SCIENCE IN MECHANICAL AND AUTOMOTIVE ENGINEERING

SMA 2374: LINEAR AND BOOLEAN ALGEBRA

END OF SEMESTER EXAMINATION SERIES: AUGUST 2012 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet

This paper consist of **FIVE** questions in **TWO** sections **A & B** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One (30 marks)

a) Define the following terms as used in linear and Boolean Algebra

i)	Simple proposition	(2 marks)
ii)	Singular matrix	(2 marks)
iii)	A vector	(2 marks)

b) Find the parametric equation for the line through the points P(-3, 2, -3) and Q(1, -1,4) (4 marks)
c) Find the value of a if the following matrix is singular. (4 marks)

© 2012 – The Mombasa Polytechnic University College

	$A = \begin{bmatrix} 3 & -9 & 2 \\ 1 & 2 & 0 \\ -2 & 3 & 1 \end{bmatrix}$	
d)	$AU(A' \cap B) = A \cup B$ Show that	(4 marks)
e)	$\overrightarrow{A} = ai - 2j - 2k$ $\overrightarrow{B} = 6i + 3j + 2k$ Find the value of a if the vectors and are perpendic	cular.
f)	(i) Find the determinant of the matrix. $A = \begin{bmatrix} a11 & a12 & a13 \\ a21 & a22 & a23 \\ a11 & a12 & a13 \end{bmatrix}$	(5 marks) (3 marks)
	in which row 1 row 3 are the same. (ii) What conclusion can you draw from your answer above?	
g)	A = 2i - 3j + 7k Find the direction of vector of	(2 marks)
SE	ECTION B (Answer any TWO questions from this section)	
Qu	lestion Two (20 marks) $\begin{pmatrix} 1 & \pi \end{pmatrix}$	
a)	$y = \tan^{-1} x \begin{pmatrix} 1, -\frac{1}{4} \end{pmatrix}$ Find the unit vectors that are tangent and normal to curve at . a = 4i + 3k $b = -2i + j + 5k$ $ 2a + 3b $	(7 marks)
b)	If and find 3x-6y-2z=7 $2x+y-2=5$	(3 marks)
c)	Find the angle between the two planes and	(6 marks)
d)	A = i - 2j - 2k $B = 6i + 3j + 2k$, If and find the projection vector of A onto B.	(4 marks)
Qu	lestion Three (20 marks)	
a)	Define the following terms:i) Proposition(2 marks)ii) Conjecture(2 marks)	
b)	$p \land q \to rvs \implies (P \land q) \to rv \tilde{s}$ Construct a truth table for the statement:	

(10 marks) A - B = A \cap B'

c) Show that

(6 marks)

Question Four (20 marks)

a) Define the following terms as used in linear algebra.

- i) Matrix (1 mark)
- ii) Zero matrix (1 mark)
- iii) Diagonal matrix (1 mark)b) (i) State the Cramer's rule for a 3x3 matrix.
 - (ii) Using Cramer's rule solve the matrix equation.
 - x + 2y + 4z = 42x + z = 33y + z = 2
- c) Use Gauss-Jordan elimination method to solve the equation.
 - $x_{1} x_{2} + x_{3} = 0$ - $x_{1} + x_{2} - x_{3} = 0$ $10x_{2} + 25x_{3} = 90$ $20x_{1} + 10x_{2} = 80$

(4 marks)

(4 marks)

(8 marks)

Question Five (20 marks)

 $\cap (A) = 3, \ \cap (B) = 2 \qquad \cap (A \cap B) = 1$ a) Given that and . Find: $\cap (A')$ i) (2 marks) $\cap (A \cup B)$ ii) (2 marks) $\cap (A \cup B)$ iii) (2 marks) $A = \begin{pmatrix} -5 & 2 \\ 2 & -2 \end{pmatrix}$

b) Calculate the Eigen values of the matrix A and its corresponding Eigen vectors if

$$P(2,-9,5)$$
 $v = 2j + 3k$

c) Find the parametric and Cartesian equation for the line through , parallel to

(5 marks)

(6 marks)

$$\overrightarrow{A} = 2i + j - k$$
 $\overrightarrow{B} = i - j + 2k$
and

d) Find a unit sector perpendicular to both and (3 marks)