THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR THE DECREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING THIRD YEAR FIRST SEMESTER

SMA 2371 : PARTIAL DIFFERENTIAL EQUATIONS
END OF SEMESTER EXAMINATION
SERIES: AUGUST/SEPTEMBER 2011
TIME: 2HOURS

Instructions to Candidates:

Answer Question ONE (Compulsory) and any other TWO questions
All working must be clearly shown
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

QUESTION ONE (30 MARKS)

$$
y+1=a x \quad a
$$

a Find the orthogonal trajectories of the family of curves , where a constant is and give a geometric description of these trajectories.
b Obtain the general solution to the partial differential equation

$$
(y-x) p+(y+x) q=\frac{x^{2}+y^{2}}{z}
$$

c Derive the partial differential equation arising from

$$
z=\frac{1}{2}\left(a^{2}+2\right) x^{2}+a x y+b x+\phi(y+a x)
$$

$$
x=a \sin u \cos v, \quad y=a \sin u \sin v, \quad z=a \cos u
$$

d Show that the sets of parametric equations
$x=a \frac{\left(1-v^{2}\right)}{1+v^{2}} \cos u, \quad y=a \frac{\left(1-v^{2}\right)}{1+v^{2}} \sin u, \quad x=\frac{2 a v}{1+v^{2}}$
represent the same surface of a sphere, center the origin, O .
[6 Marks]

$$
\left(D_{x}^{2}-3 D_{x} D_{y}+2 D_{y}^{2}\right) z=e^{3 x+y}-\cos (4 x-y)
$$

e Find the complete solution of

QUESTION TWO (20 MARKS)

a Find the general solution of the partial differential equation by direct integration

$$
\begin{equation*}
t \frac{\partial^{2} u}{\partial x \partial t}+2 \frac{\partial u}{\partial x}=x^{2} \tag{6Marks}
\end{equation*}
$$

b Use the method of separation of variables to solve the one dimensional wave equation

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} & u(x, t)=u(L, t)=0, \quad t \geq 0 \\
& \left.u_{t}\right|_{t=0}=g(x), \quad 0 \leq x \leq L \\
& 0 \leq x \leq L
\end{array}
$$

Satisfying the given Cauchy conditions where $\quad f \quad g$ and f are given functions, $\quad L$ is a given

$$
\begin{equation*}
c^{2}=\frac{\tau}{\rho} \tag{14Marks}
\end{equation*}
$$

constant and

QUESTION THREE

a Use Laplace transform method to solve the partial differential equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$
subject to the boundary conditions

$$
\begin{aligned}
& u(x, 0)=3 \sin 2 \pi x \\
& \ell\{u(0, t)\}=U(0, s)=0 \\
& \ell\{u(L, t)\}=U(L, s)=0, \quad 0<x<L, \quad t>0
\end{aligned}
$$

where $\quad,(\quad \mathrm{N}$ a natural number $)$ and $\{\{u(x, t)\}$ denotes the Laplace transform of $u(x, t)$
Marks]
b An infinite metal plate covering the first quadrant has the edge along the y-axis held at 0^{0}, and the edge along the x -axis held at
$u(x, 0)= \begin{cases}100^{0}, & 0<x<1 \\ 0^{0}, & x>1\end{cases}$

Use Fourier transform to find the steady-state temperature distribution as a function of and . y

Assume temperatures of zero as tends to infinity.
[10 Marks]

QUESTION FOUR (20 MARKS)

a Solve the system
$y_{1}{ }^{\prime}=4 y_{1}-2 y_{2}$
$y_{2}{ }^{\prime}=y_{1}+y_{2}$

$$
y_{1}(0)=3 \quad y_{2}(0)=-1
$$

subject to the initial conditions
and

$$
\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}=5 x y
$$

b Find the General Solution for
[8 Marks] QUESTION FIVE (20 MARKS)

$$
x^{2}+y^{2}=z^{2} \tan ^{2} \alpha
$$

a Find the orthogonal trajectories on the cone of its intersection with the family

$$
z=0
$$

of planes parallel to .

$$
z=a x+b y+a b
$$

b Verify that $z=p x+q y+p q$
is the complete solution the partial differential equation

$$
z=p x+q y+p q
$$

Hence show that the integral surface of passing through the curve $x=\tau, \quad y=\tau, \quad z=\tau^{2}$
can be expressed as
$z=\frac{[x+(-3 \pm 2 \sqrt{2}) y]^{2}}{4(3 \mp 2 \sqrt{2})}$

A SHORT TABLE OF LAPLACE TRASFORMS

$f(t)$	$L\{f(t)\}$
1	$\frac{1}{s}$
$e^{-a t}$	$\frac{1}{s+1}$
$\frac{\sin a t}{t}$	$\frac{\tan ^{-1} \frac{a}{s} \quad \text { for } \operatorname{Re} s>i m a}{s^{2}+a^{2}}, \quad$ for $\operatorname{Re} s>i m a$
$\sin a t$	$\frac{s}{s^{2}+a^{2}}, \quad$ for $\operatorname{Re} s>i m a$
$\cos a t$	$\frac{1}{2}\left(\tan ^{-1} \frac{a+b}{s}\right)+\tan ^{-1}\left(\frac{a-b}{s}\right)$ for Re $s>0$
$\frac{1}{t} \sin a t \cos b t$	

