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QUESTION ONE (30 MARKS)

a Find the orthogonal trajectories of the family of curves
axy 1

, where 
a

a constant is and give a 
geometric description of these trajectories. [5 Marks]

b Obtain the general solution to the partial differential equation
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[5 Marks]

c Derive the partial differential equation arising from
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d Show that the sets of parametric equations 
uazvuayvuax cos,sinsin,cossin 

  and 
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represent the same surface of a sphere, center the origin, O. [6 Marks]

e Find the complete solution of 

   yxezDDDD yx
yyxx   4cos23 322

[8 Marks]

QUESTION TWO (20 MARKS)

a Find the general solution of the partial differential equation by direct integration
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[6 Marks]

b Use the method of separation of variables to solve the one dimensional wave equation 
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Satisfying the given Cauchy conditions where 
f

and 
g

 are given functions,  
L

 is a       given 

constant and 

2c

[14 Marks]

QUESTION THREE

a Use Laplace transform method to solve the partial differential equation 
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subject to the boundary conditions
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where 
L

, (


 a natural number) and 
  txu ,

denotes the Laplace transform of   
 txu ,

 
[10 

Marks]

b An infinite metal plate covering the first quadrant has the edge along the y-axis held at 00, and the 
edge along the x-axis held at 

 

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Use Fourier transform to find the steady-state temperature distribution as a function of 
x

 and
y

. 

Assume temperatures of zero as 
y

 tends to infinity. [10 Marks]

QUESTION FOUR (20 MARKS)

a Solve the system 
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[12 Marks]
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subject to the initial conditions 
  301 y

 and  
  102 y

b Find the General Solution for  
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[8 Marks]
QUESTION FIVE (20 MARKS)

a Find the orthogonal trajectories on the cone 
2222 tanzyx 

 of its intersection with the family 

of planes parallel to
0z

. [11 Marks]

b Verify that 
abbyaxz 

 is the complete solution the partial differential equation
pqqypxz 

Hence show that the integral surface of 
pqqypxz 

 passing through the curve
2,,   zyx
 can be expressed as 
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[9 Marks]

A SHORT TABLE OF LAPLACE TRASFORMS
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