

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE DECREE IN BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING THIRD YEAR FIRST SEMESTER

SMA 2371 : PARTIAL DIFFERENTIAL EQUATIONS

END OF SEMESTER EXAMINATION SERIES: AUGUST/SEPTEMBER 2011 TIME: 2HOURS

Instructions to Candidates:

Answer Question **ONE** (Compulsory) and any other **TWO** questions All working must be clearly shown Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

QUESTION ONE (30 MARKS)

y+1 = ax a a Find the orthogonal trajectories of the family of curves , where a constant is and give a geometric description of these trajectories. [5 Marks]

b Obtain the general solution to the partial differential equation

$$(y-x)p + (y+x)q = \frac{x^2 + y^2}{z}$$

[5 Marks]

[6 Marks]

c Derive the partial differential equation arising from

$$z = \frac{1}{2} (a^{2} + 2)x^{2} + axy + bx + \phi(y + ax)$$

d Show that the sets of parametric equations

$$x = a \frac{(1 - v^2)}{1 + v^2} \cos u, \quad y = a \frac{(1 - v^2)}{1 + v^2} \sin u, \quad x = \frac{2av}{1 + v^2}$$

$$\left(D_{x}^{2} - 3D_{x}D_{y} + 2D_{y}^{2}\right)z = e^{3x+y} - \cos(4x-y)$$

 $x = a \sin u \cos v$, $y = a \sin u \sin v$, $z = a \cos u$

e Find the complete solution of

QUESTION TWO (20 MARKS)

a Find the general solution of the partial differential equation by direct integration $\partial^2 u = \partial u$

$$t\frac{\partial u}{\partial x\partial t} + 2\frac{\partial u}{\partial x} = x^2$$
[6 Marks]

b Use the method of separation of variables to solve the one dimensional wave equation $u(0, t) = u(I, t) = 0, \quad t \ge 0$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

$$u(0,t) = u(L,t) = 0, \quad t \ge 0$$

$$u(x,0) = f(x), \quad 0 \le x \le L$$

$$u_t|_{t=0} = g(x), \quad 0 \le x \le L$$

Satisfying the given Cauchy conditions where $\begin{array}{c} f & g \\ \text{and} \end{array}$ are given functions, $\begin{array}{c} L \\ \text{is a} \end{array}$ given $c^2 = \frac{\tau}{\rho}$

constant and

QUESTION THREE

a Use Laplace transform method to solve the partial differential equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

subject to the boundary conditions

$$u(x,0) = 3\sin 2\pi x$$

$$t\{u(0,t)\} = U(0,s) = 0$$

$$t\{u(L,t)\} = U(L,s) = 0, \quad 0 < x < L, \quad t > 0$$

and

[8 Marks]

[14 Marks]

L	L∈N	Ν		$\ell[u(x,t)]$		u(x,t)
where	,	, (a natural number) and		denotes the Laplace transform of	

Marks]

b An infinite metal plate covering the first quadrant has the edge along the y-axis held at 0⁰, and the edge along the x-axis held at

$$u(x,0) = \begin{cases} 100^{\circ}, & 0 < x < 1\\ 0^{\circ}, & x > 1 \end{cases}$$

Use Fourier transform to find the steady-state temperature distribution as a function of $\begin{bmatrix} x & y \\ and \end{bmatrix}$. Assume temperatures of zero as tends to infinity. [10 Marks]

QUESTION FOUR (20 MARKS)

a Solve the system

$$y_1' = 4y_1 - 2y_2$$

 $y_2' = y_1 + y_2$

[12 Marks]

[10

© 2011 The Mombasa Polytechnic University College

 $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + 5\frac{\partial^2 z}{\partial y^2} = 5xy$ b Find the General Solution for

subject to the initial conditions

QUESTION FIVE (20 MARKS)

 $x^2 + y^2 = z^2 \tan^2 \alpha$ a Find the orthogonal trajectories on the cone of its intersection with the family z = 0of planes parallel to [11 Marks] .

$$z = ax + by + ab$$

b Verify that is the complete solution the partial differential equation
$$z = px + qy + pq$$

$$z = px + qy + pq$$

Hence show that the integral surface of

 $x = \tau$, $y = \tau$, $z = \tau^2$

can be expressed as

$$z = \frac{\left[x + \left(-3 \pm 2\sqrt{2}\right)y\right]^2}{4\left(3 \pm 2\sqrt{2}\right)}$$

[9 Marks]

A SHORT TABLE OF LAPLACE TRASFORMS

Page 4

 $y_1(0) = 3$ $y_2(0) = -1$ and

[8 Marks]

passing through the curve

f(t)	$T \{f(t)\}$
1(0)	L(I(t))
1	1
	S
e^{-at}	1
	s+1
sin at	0
	$\tan^{-1}\frac{a}{c}$ for Re s > ima
t	S
sin at	a
	$\overline{s^2 + a^2}$ for Res > ima
	,
cos at	<u> </u>
	$s^2 + a^2$ for Res > ima
	,
$\begin{vmatrix} 1 \\ -\sin at \cos bt \end{vmatrix}$	$\left \frac{1}{2} \left(\tan^{-1} \frac{a+b}{a} \right) + \tan^{-1} \left(\frac{a-b}{a} \right) \right $ for Res > 0
t	$2 \begin{pmatrix} a \\ s \end{pmatrix} = a \begin{pmatrix} s \\ s \end{pmatrix}$