THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN CIVIL/ELECTRICAL \& ELECTRONIC ENGINEERING
(BSCE,BSEE)

SMA 2371: PARTIAL DIFFERENTIAL EQUATION
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
y=k x^{2}, k \neq 0
$$

a) Describe the orthogonal trajectories of
(6 marks)

$$
(y-z) p+(z-x) q=x-y
$$

b) Obtain the general solution to the partial differential equation

$$
z=1 / 2\left(a^{2}+2\right) x^{2}+a x y+b x+\phi(y+a x)
$$

c) Derive the partial differential equations arising from
(6 marks)

$$
x=a \sin u \cos v, y=a \sin u \sin v, z=a \cos u
$$

d) Show that the sets of parametric equation and $x=a \frac{\left(1-v^{2}\right)}{1+v^{2}} \cos u, y=a \frac{\left(1-v^{2}\right)}{1+v^{2}} \sin u, x=\frac{2 a v}{1+v^{2}}$
represent the same surface of a sphere, centre of origin O .

$$
\left(D_{x}^{2}+3 D x D y+2 d_{y}^{z}\right) z=e^{3 x+y}+12 x y
$$

e) Find the complete solution of

Question Two

a) Find the direction cosines of the space curve defined by the parametric equations.

$$
x=-0.5 s^{2}, y=0.25 s^{3}, z=1.5 s^{2} \quad-2,2,6
$$

$O^{o} \quad 100^{\circ}$
b) A long rectangular metal plate has its two long sides and the far end at and the base at . The width of the plate is 10 cm . Find by the method of separation of variables, the steady-state temperature distribution inside the plate.
(14 marks)

Question Three

a) Use Laplace Transforms to solve the partial equation:

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=U
$$

$$
u(x, o)=e^{-5 x} \quad u(o, t)=o, t>0
$$

$$
u(x, t)
$$

subject to the initial condition
and given that $t>0, x>0$
is bounded for (7 marks)
b) An infinite metal plate covering the first quadrant has the edge along the y-axis held at 0 ; and the edge along the x -axis, held at :

$$
u(x, 0)=\left\{\begin{array}{cc}
100^{\circ} & , 0<x<1 \\
0^{\circ} & , \quad x>1
\end{array}\right.
$$

Use Fourier transform to find the steady-state temperature distribution as a function of x and y . Assume temperature distribution as function of x and y . Assume temperature of zero as y tends to infinity.
(13 marks)

Question Four

a) Solve the system:

$$
\begin{align*}
& y^{1}=4 y_{1}-2 y_{2} \\
& y_{2}^{1}=y_{1}+y_{2} \quad \text { subject to the initial conditions } \quad y_{1}(0)=3 \quad \text { and } \quad y_{2}(0)=-1
\end{align*}
$$

b) Find the General solution for

$$
\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{2 \partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}=\sin (3 x-y)
$$

Question Five

$$
x^{2}+y^{2}=z^{2} \tan \alpha
$$

a) Find the orthogonal trajectories on the cone planes parallel to $\mathrm{z}=0$.
of its intersection with the family of (10 marks)

$$
(2 x y-1) p+\left(z-2 x^{2}\right) q=2\left(x-y^{2}\right)
$$

b) Find the general integral of the partial differential equations and also the particular integral which passes through the line $\mathrm{x}=1, \mathrm{y}=0$

