THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

 (A Constituent College of JKUAT)Faculty of Applied \& Health Sciences DEPARTMENT OF MATHEMATICS \& PHYSICS

INSTITUTIONAL BASED PROGRAMME

UNIVERSITY EXAMINATIONS FOR DEGREE IN

 BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING YR II, SEM II
SMA 2271: ORDINARY DIFFERENTIAL EQUATIONS

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: FEBRUARY/MARCH 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other two questions
This paper consist of TWO printed pages

SECTION A (COMPULSORY)

Question One (30 Marks)

a) Explain what is a homogeneous function, hence determine the homogenouity of the function

$$
f(x, y)=e^{\frac{y}{x}}+\tan y / x
$$

$$
\begin{equation*}
e^{-3 t}(2 \cos 5 t-3 \sin 3 t) \tag{3mark}
\end{equation*}
$$

b) Find the Laplace transform of
c) Using the method of undetermined coefficient determine a general solution of an equation. (7 marks)
d) Use the method of frobenius to find the solution of the differential equation

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0
$$

marks)

$$
\frac{d y}{d x}+y=e^{x}
$$

e) Find the general solution of

SECTION B (ANSWER ANY TWO QUESTIONS FROM THIS SECTION)

Question Two (20 Marks)

$$
F(s)=\frac{3 s+7}{s^{2}-4}
$$

a) Find the inverse Laplace transform of

$$
\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0
$$

b) Solve the equation
c) An electric circuit consists of an inductance of 0.1 henry a resistance of 20 ohms and a condenser of i capacitance 25 microfarads. Find the charge q and the current at any time t, given that the initial

$$
i=\frac{d q}{d t}=0 \quad L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E(t)
$$

conditions are $\mathrm{q}=0.05$ coulombs and
when $t=0$ if
(8 marks)

Question Three (20 Marks)

a) Solve $\frac{d y}{d x}+y \cot x=\cos x$

$$
x=\frac{\pi}{2}, \quad y=\frac{5}{2}
$$

. (6 marks)

$$
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0
$$

b) Obtain a general solution of the equation
c) An object moves with simple harmonic motion on the x axis. Initially it is located at a distance 46 m away $100 \mathrm{~m} / \mathrm{s}^{2}$
from the origin when $\mathrm{t}=0$ and has velocity $\mathrm{v}=15 \mathrm{~m} / \mathrm{s}$ and decelerating at directed towards the origin O . find the equation of the position at any time t .
(6 marks)

Question Four (20 Marks)

$$
y \tan x \frac{d y}{d x}=\left(4+y^{2}\right) \sec ^{2} x
$$

a) a) By separation of variables solve
(4 marks)
$\left(x^{2}+y^{2}\right) d x+2 x y d y=0 \quad y(1)=1$
b) Find the particular solution for the initial value problem

$$
L \frac{d i}{d t}+R i=E(t)
$$

i $\quad E(t)=E_{0}$
c) Given the equation ,find an expression for if when the initial current is $i=0$
provided that $\mathrm{L}=3$ henries, $\mathrm{R}=15$ ohms in a 60 cycle sine wave of amplitude 110 volts, while when $\mathrm{t}=0$. (8 marks)

Question Five (20 marks)

$$
\frac{s+2}{s^{2}-4 s+3}
$$

a) Find the Laplace inverse of
b) Solve the $2^{\text {nd }}$ order differential equation

$$
y \frac{d^{2} y}{d x^{2}}=2\left[\frac{d y}{d x}\right]^{2}-2\left[\frac{d y}{d x}\right]
$$

c) A particle of mass 2 kg moves along the x -axis attracted towards the origin O by a force whose magnitude is numerically equal to 8 x . if it is initially at rest at $\mathrm{x}=20$ and has also a damping force whose magnitude is numerically equal to 8 times the instantaneous speed. Find the equations of displacement and velocity of the particle at any time t .

