THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

UNIVERSITY EXAMINATIONS

DEPARTMENT OF MATHEMATICS AND PHYSICS
SECOND SEMESTER SPECIAL / SUPPLEMENTARY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING/ MECHANICAL ENGINEERING/BUILDING AND CIVIL ENGINEERING

SMA 2271: ORDINARY DIFFERENTIAL EQUATIONS

DATE: DECEMBER 2011

Time: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

QUESTION ONE (30 MARKS)

a) State the necessary conditions for a differential equation to be considered linear (3 marks)

$$
3 \frac{d^{3} y}{d x^{3}}+3 y \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+y=e^{2 x}
$$

Hence with reasons state whether the equation is linear

> (1 mark)
b) Differentiate between general and particular solution of a differential

$$
f(x)=\left(x^{3}+c\right) e^{-3 x} \quad c
$$

equation. Hence show that the function
where is an

$$
\frac{d y}{d x}+3 y=3 x^{2} e^{-3 x}
$$

arbitrary constant is a solution of the differential equation
(4 marks)

$$
\left(A x^{2}+B x y+C y^{2}\right) d x+\left(D x^{2}+E x y+F y^{2}\right) d y=0
$$

c) Given the differential equation
show that the equation is exact if $B=2 D$ and $E=2 C$
(3 marks)

$$
u=y^{1-n}
$$

d) Prove that the transformation reduces the equation

$$
\begin{align*}
& \frac{d y}{d x}+P(x) y=Q(x) y^{n} \\
& \text { to a linear equation in }{ }^{u} \text { and }{ }^{x .} \text { Hence solve the } \\
& \text { (} \frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}} \\
& \text { equation } \tag{7marks}\\
& \text { (7 marks) }
\end{align*}
$$

$$
a_{o}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=0
$$

e) Given the differential equation of the following statements in relation to a power series solution.
i) Ordinary point of the equation
(1 mark)
ii) Regular singular point of the equation
(1 mark)
iii) Hence using Taylor's series expansion, find a power series solution of

$$
x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=0 \quad y(1)=0, y^{\prime}(1)=4
$$

the equation
(6 marks)

$$
\left(x^{2}+2 y^{2}\right) d x-2 x y d y=0
$$

f) Obtain a general solution of the equation
(4 marks)

QUESTION TWO (20 MARKS)

$$
y \tan x \frac{d y}{d x}=\left(4+y^{2}\right) \sec ^{2} x
$$

a) By separation of variables solve
(4 marks)

$$
\frac{d y}{d x}=\frac{x+y-3}{x-y-1}
$$

b) Solve the linear fractional equation to obtain the general solution.
(6 marks)

Find the power series solution of the differential equation
c)

$$
2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+(x-5) y=0
$$

(10 marks)

QUESTION THREE (20 MARKS)

$$
\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0
$$

a) Solve
(7 marks)
b) An object moves with simple harmonic motion on the x axis. Initially it is located at a distance 46 m away from the origin when $t=0$ and has velocity $v=15 \mathrm{~m} / \mathrm{s}$ and $100 \mathrm{~m} / \mathrm{s}^{2}$
decelerating at directed towards the origin O . find the equation of the position at any time t (6 marks) c) Find the

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=0
$$

particular solution for the initial value problem if

$$
\begin{array}{ll}
y(0)=0 & y^{\prime}(0)=-4 \\
, & (7 \text { marks })
\end{array}
$$

a) Solve $\frac{d y}{d x}+y \cot x=\cos x$ to obtain the particular solution given that at

$$
x=\frac{\pi}{2}
$$

$$
y=\frac{5}{2}
$$

When
(5 marks)

$$
\left(x^{2}-x y+y^{2}\right) d x-x y d y=0
$$

b) Obtain a general solution of the equation
(7 marks)
c) An electric circuit consists of an inductance of 0.1 henry a resistance of 20 ohms and a condenser of capacitance 25 microfarads. Find the i charge q and the current at any time t, given that the initial conditions

$$
i=\frac{d q}{d t}=0
$$

are $q=0.05$ coulombs and
when $t=0$ if

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{C}=E(t)
$$

(8 marks)

QUESTION FIVE (20 MARKS)

a) Show that $\left(y^{3}+2 x\right) d x+\left(3 x y^{2}+1\right) d y=0$ is exact and then find its general
n.

$$
53^{0} c
$$

b) The initial temperature of a body is and after 5 minutes its $45^{\circ} \mathrm{C}$
temperature is , from Newton's law of cooling it is known that the rate of cooling of a body is proportional to the temperature difference between the body and its surrounding room temperature. Use this to
predict the temperature of the body after a further 5 minutes given that the room temperature was constant at $21^{\circ} \mathrm{C}$.
(7 marks)

$$
\frac{d x}{d t}+2 x=4 e^{3 t} \quad t=0, \quad x=1
$$

c) Using laplace transform solve
(8 marks)

THE END

