THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Applied \& Health Sciences
DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENG., MECHANICAL \& CIVIL ENGINEERING (YI, SEM I)

SMA 2170: ALGEBRA

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2011
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer booklet
This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
This paper consist of THREE printed pages
a) i) In how many ways can the letters of the word TROTTING be arranged?
$\frac{21!}{8!13!}$
ii) Simplify
[3 marks]

$$
\frac{x^{-\frac{1}{2}}(x-1)^{\frac{1}{2}}+x^{\frac{1}{2}}(x-1)^{-\frac{1}{2}}}{x^{\frac{1}{2}}}=\frac{2 x-1}{x(x-1)^{\frac{1}{2}}}
$$

b) Show that
[5marks]

$$
\log _{10} \frac{a^{2} b^{3}}{100 \sqrt{c}}
$$

c) Express
in terms of $\log _{10} \mathrm{a}, \log _{10} \mathrm{~b}$ and $\log _{10} \mathrm{c}$,
d) If α and β are the roots of the equation $3 x^{2}+2=8 x$, find the values of $\alpha^{2}+\beta^{2}$ and $\alpha^{-1}+\beta^{-1}$
marks]
e) In the expansion of $\left(1-2 x+a x^{2}\right)^{4}$ as a series of powers of ${ }_{x}$, the coefficient of x^{3} is zero. Find a and the coefficient of ${ }_{x^{4}}$.
f) By first writing ${ }^{z_{1}}$ and ${ }^{z_{2}}$ in polar form, find ${ }_{z_{1} z_{2}}{ }^{\text {given that }}{ }_{z_{1}=1+i} ; z_{2}=\sqrt{3}-i$
(h) Change $6 e^{2-i 3}$ into (a+ib) form.
[4marks]

QUESTION TWO [20 marks]

a) Solve the equation
[6 marks]

$$
3 \cdot \sqrt{\frac{x}{x-1}}+6 \cdot \sqrt{\frac{x-1}{x}}=11
$$

b) Prove that , hence show that

$$
\log _{q} p=\frac{1}{\log _{p} q} \quad \log _{a} N \cdot \log _{b} M=\log _{b} N \cdot \log _{a} M
$$

c) Express in polar form hence find all the solutions to

$$
z=-16 \quad \sqrt[4]{-16}
$$

QUESTION THREE [20 marks]

$$
a x^{2}+b x+c=0
$$

(a) Given , derive the quadratic formulae.

$$
\begin{aligned}
& \frac{-25}{2}\left(\frac{1+i 2}{3+i 4}-\frac{2-i 5}{-i} \cdot \stackrel{\cdot}{9}\right. \\
& =57+i 24
\end{aligned}
$$

(b) Show that:
(c) Prove by induction that:

$$
1^{2}+2^{2}+---+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

QUESTION FOUR [20 marks]

$$
\frac{\sqrt[3]{(1-3 x) \sqrt{(1+x)}}}{\left(1+\frac{x}{2}\right)^{3}}
$$

a) Simplify: , given that powers of x above the first may be neglected.
[6 marks]
(b) The following estimate is received for printing copies of a pamphlet.

No. of copies	50	100	200	500
Cost in $£$	11.50	12.50	14.50	20.50

i) Obtain a law giving the cost, £y of x copies graphically.
[11marks]
ii) Estimate the cost of 350 copies.
[3 marks]

QUESTION FIVE [20marks]
a) If

$$
\frac{\sqrt{12}}{\sqrt{6}-\sqrt{2}}-\frac{\sqrt{12}}{\sqrt{6}+\sqrt{2}}=a \sqrt{6}+b \sqrt{2}
$$

find the values of a and b where a and b are rational numbers
b) Evaluate $(1-i)^{100}$ in Cartesian form giving your result simplified as much as possible
marks]
c) Find the value of λ for which the equation $x^{2}-x+1=\lambda\left(x^{2}+x+1\right)$ where $\lambda \neq 1$, has equal roots and find, also the Range of values of λ for which the roots are real and unequal.
d) Use Mathematical Induction to prove that $n_{n}{ }^{3}-n$ is divisible by $_{3}$ whenever $n{ }_{n}$ is a positive integer

