THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health

 SciencesDEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONICS ENGINEERING/ MECHANICAL \& AUTOMOTIVE ENGINEERING/INFORMATION TECHNOLOGY/BUIDLING \& CIVIL ENGINEERINGCIVIL ENGINEERING

SMA 2101/2172/AMA 4101: CALCULUS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2012
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination - Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
a) Find the gradient of the tangent and normal at point $(2,3)$ to the hyperbola $x y=6$. (5 marks)
b) A spherical balloon is inflated at the rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of growth of the radius if $\mathrm{r}=2 \mathrm{~cm}$, correct to two decimal places.
(4 marks)

$$
f(x) \quad g(x)
$$

c) Given functions and . Show by use of first principle that:

$$
(f g)^{\prime} x=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

$$
f: x \rightarrow 1+x-6 / x \quad g: x \rightarrow 1 / x \quad x \neq 0, \quad h=f(g(x))
$$

d) If function and , where find

$$
y=\frac{1}{\sqrt{x^{2}-1}}
$$

e) Using first principle differentiate:
f) Find:

$$
\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}
$$

(i)

$$
\lim _{x \rightarrow \infty} \frac{5 x+1}{10+2 x}
$$

(ii)

Question Two

a) A projectile is aimed vertically and its height after t seconds, is S metres, where:

$$
s=25.2 t-4.9 t^{2}
$$

Find:
(i) Its height and velocity after 3 seconds.
(ii) When it is momentarily at rest
(iii) Maximum height attained
(iv) Acceleration at $\mathrm{t}=4$ seconds.

$$
y=4 x-x^{2}
$$

b) Find the greatest or least value of y on the curve and sketch the curve.

Question Three

a) A metal sheet has measurements 8 by 5 metres. Equal squares of side x metres are removed from each
corner and the edges are then turned up to make an open box of volume

$$
V=40 x-26 x^{2}+4 x^{3}
$$

Show that:
Find the maximum possible volume and the corresponding value of x .
b) By applying the concept of small changes as used in calculus. Find the approximate value of

$$
g(x)=\frac{2 x-1}{x-3} \quad g(x)=\frac{a}{x-3}+b
$$

(5 marks)
c) Show that can be expressed in the form . Find a and b if they are real numbers.
d) Define the terms:
(i) Domain
(2 marks)
(ii) Composite function

Question Four

a) (i) Find A in terms of x if:

$$
\frac{d A}{d x}=\frac{(3 x+1)\left(x^{2}-1\right)}{x^{5}}
$$

(ii) Give the value of A if $\mathrm{x}=2$

$$
x=1, x=3 \quad y=x^{3}
$$

b) (i) Find the area enclosed by the x-axis, and the curve
(ii) The volume of a cube is increasing at the rate of $2 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of change of the base when its length is 3 cm .
c) Find the gradient of the curve:
$x=\frac{t}{1+t}, \quad y=\frac{t^{3}}{1+t}$ $(1 / 2,1 / 2)$
at the point

Question Five

d) Differentiate:

$$
y=\frac{\sin x}{1+\cos x}
$$

(i)
(4 marks)

$$
y^{2}=\frac{\tan x}{1+\tan ^{2} x}
$$

(ii)
c) Find:

$$
y=2 x^{3}+3 x^{2}-12 x+7
$$

(i) The turning points of the graph
(ii) Distinguish between maximum and minimum value of the points.
(iii) Show that the graph passes through $(1,0)$ and find the other point.

