

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE

SMA 2100: DISCRETE MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Using suitable examples, explain each of the following:

(i)	A tantology	(2 marks)
(ii)	A contingency	(2 marks)
(iii)	A contradiction	$(2$ marks)

$A\{P, 3, k,\{t\}\} \quad B=\{x, t, m\}$
b) Let: and

State with reasons whether each of the following is true or false.

$$
\{\mathrm{x}\} \in B
$$

(i)

$$
t \in A
$$

(ii)

$$
\{\mathrm{x}\} \subset B
$$

(iii)

$$
\phi \subset A
$$

(iv)
iii)

$$
\mathrm{f}: \operatorname{IR} \rightarrow \mathrm{IR}, \mathrm{f}(\mathrm{x})=2^{x+1}
$$

c) Suppose
(i) Check whether f is injective
(ii) Check whether f is surjective
d) Construct the truth table of
e) Use mathematical induction to show that is divisible by 3

```
    \(f, g: I R \rightarrow I R \quad f(x)=2 x^{2}+1, g(x)=7 x+6\)
f) If and
Find:
    fog \((x)\)
```


SECTION B (Answer any TWO questions from this section)

Question Two

a) A survey conducted in TUM revealed that in a class of 80 students, 55 prefer google search engine, 46 prefer yahoo search engine while 50 prefer MSN. Also 37 prefer google and yahoo while 28 frefer google and MSN. 7 students do not prefer any of the three and 12 prefer all the three. By use of a venn diagram, find the number of students who prefer exactly one of the search engine. (8 marks)
b) Let:

$$
\begin{aligned}
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, 1,2,3, \mathrm{k}, \mathrm{t}, \mathrm{f}\} \\
& B=\{1,2,3,4,5\}, C=\{a, b, c, d, e, f\}
\end{aligned}
$$

$$
\mathrm{U}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c},-\cdots-\cdots, \mathrm{t}, 1,2,3,4,5\}
$$

If find:

$$
\mathrm{A}^{\mathrm{C}} \cap \mathrm{~B}
$$

(i)

$$
\mathrm{A}^{\mathrm{C}} \cup\left(A \cap B^{C}\right) \cup B
$$

(ii)

$$
(\mathrm{A}-\mathrm{B}) \cap(B-C)
$$

(iii)

$$
(A-B) \cap(B-A)=\phi
$$

(iv) Show that (8 marks)
c) Prove the following using set notation.

$$
(\mathrm{A} \cap \mathrm{~B})^{C}=A^{C} \cup B^{C}
$$

Question Three

a) Let
$\mathrm{f}: \operatorname{IR} \rightarrow \operatorname{IR}, \mathrm{f}(\mathrm{x})=3 x^{2}+1$
$g: I R \rightarrow I R, g(x)=\frac{x^{3}-5 x}{7-4 x}$
(i) Compute fog and gof stating the domain
(4 marks)

$$
g^{-1}(2)
$$

(ii) Compute
(3 marks)
b) Use direct proof to show that if q is even then 4 divides q^{2}.
(4 marks)

$$
3+6+9+\ldots 3 n=3 / 2 n(n+1)
$$

c) Use mathematical induction to show that

$$
\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y} \quad|\mathrm{X}|=|Y|
$$

d) Show that if is a bijection then

Question Four
a) (i) Explain what is meant by logical equivalence.
(ii) Let p and q be proposition. Show that:

$$
\begin{equation*}
(p \vee q) \wedge(p \vee \sim q) \cap(\sim \mathrm{p} \vee \mathrm{q}) \Leftrightarrow p \wedge q \tag{5marks}
\end{equation*}
$$

b) Write the inverse and the contrapositive of the statement: "If I come early then I can get the car"
c) Test the validity of the following argument:
"If Jane becomes the president, productivity will increase" Productivity decreased therefore Jane did not become the president.
d) Negate the following statements:
(i) If Mark appreciates Discrete Mathematics, then he will become a pure Mathematics major

$$
\mathrm{Vx} \in \mathrm{IR}, \mathrm{x}^{2}>0
$$

(ii)

Question Five

$$
\sqrt{2}
$$

a) Use contradiction to prove that is irrational.
b) With the negation of each of the following proportions:

$$
V x \in I R, x>3 \rightarrow x^{2}>9
$$

(i)
(ii) Every polynomial function is continuous.
(iii) There exists a triangle with the property that the sum of angles is greater than 180 o
c) Consider the universal conditional proposition:
$V x \in D, \quad P(x) \quad Q(x)$
(i) Find the contra positive
(ii) Find the converse

$$
V x \in D, P(x)
$$

d) Write in the form the proposition "every real number is either positive, negative or 0"
e) If C is contradiction, determine the validity of the following for any p .
(2 marks)
$\sim P \rightarrow C$
$\therefore P$

