

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE

SMA 2100: DISCRETE MATHEMATICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions in **TWO** sections **A & B** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

- **a)** Using suitable examples, explain each of the following:
 - (i) A tantology
 - (ii) A contingency
 - (iii) A contradiction

 $A{P,3, k, \{t\}} = \{x, t, m\}$ and

b) Let:

State with reasons whether each of the following is true or false.

(2 marks) (2 marks) (2 marks)

	$\{\mathbf{x}\} \in B$				
(i)		(2 marks)			
(ii)	t∈ A	(2 marks)			
(***)	$\{\mathbf{x}\} \subset B$	() marka)			
(III)	$\phi \subset A$	(2 IIIdrKS)			
(iv)	$f : IR \rightarrow IR, f(x) = 2^{x+1}$	(2 marks)			
Suppos (i) (ii)	pposeCheck whether f is injectiveCheck whether f is surjective				
[~ $(\mathbf{p} \wedge \mathbf{q})$] $\lor r$ d) Construct the truth table of					
$n^3 - n$ e) Use mathematical induction to show that is divisible by 3 (
f,g If Find: fog	$: IR \to IR \qquad f(x) = 2x^{2} + 1, g(x) = 7x + 6$ and . g(x)	(2 marks)			
	(i) (ii) (iii) (iv) Suppor (i) (ii) Constr Use m (i) f,g If Find: fo	$ \{x\} \in B $ (i) $t \in A$ (ii) $\{x\} \subset B$ (iii) $\phi \subset A$ (iv) $f : IR \to IR, f(x) = 2^{x+1}$ Suppose (i) Check whether f is injective (ii) Check whether f is surjective (ii) Check whether f is surjective (iii) Check whether f is surjective (iii) Check whether f is surjective (iii) Check whether f is and $n^3 - n$ Use mathematical induction to show that $n^3 - n$ is divisible by 3 $ f, g: IR \to IR f(x) = 2x^2 + 1, g(x) = 7x + 6$ If and Find: $fog(x)$			

SECTION B (Answer any TWO questions from this section)

Question Two

- **a)** A survey conducted in TUM revealed that in a class of 80 students, 55 prefer google search engine, 46 prefer yahoo search engine while 50 prefer MSN. Also 37 prefer google and yahoo while 28 frefer google and MSN. 7 students do not prefer any of the three and 12 prefer all the three. By use of a venn diagram, find the number of students who prefer exactly one of the search engine. (8 marks)
- **b)** Let:

$$U = \{a, b, c, - - - -, t, 1, 2, 3, 4, 5\}$$

If find:

$$A^{C} \cap B$$

(i)

$$A^{C} \cup (A \cap B^{C}) \cup B$$

(ii)

$$(A - B) \cap (B - C)$$

(iii)

	$(\mathbf{A} - \mathbf{B}) \cap (\mathbf{B} - \mathbf{A}) = \phi$							
	(iv) Show that	(8 marks)						
c)	Prove the following using set notation.	(4 marks)						
	$(\mathbf{A} \cap \mathbf{B})^{-} = \mathbf{A}^{+} \cup \mathbf{B}^{+}$	(4 marks)						
Question Three								
a)	Let $f: \mathbb{R} \to \mathbb{R}$ $f(\mathbf{x}) = 3\mathbf{x}^2 + 1$							
	$g: IR \to IR, g(x) = \frac{x^3 - 5x}{7 - 4x}$							
	(i) Compute fog and gof stating the domain	(4 marks)						
	(ii) Compute $g^{-1}(2)$	(3 marks)						
b)	Use direct proof to show that if q is even then 4 divides q^2 .	(4 marks)						
c)	$3+6+9+\3n = \frac{3}{2}n(n+1)$ Use mathematical induction to show that	(5 marks)						
d)	f: X \rightarrow Y $ X = Y $ Show that if is a bijection then	(4 marks)						
Qu	iestion Four							
a)	 (i) Explain what is meant by logical equivalence. (ii) Let p and q be proposition. Show that: 	(3 marks)						
	$(p \lor q) \land (p \lor \sim q) \land (\sim p \lor q) \Leftrightarrow p \land q$	(5 marks)						
b)	Write the inverse and the contrapositive of the statement: "If I come early then I can	get the car" (4 marks)						
c)	Test the validity of the following argument: "If Jane becomes the president, productivity will increase" Productivity decreased t not become the president.	herefore Jane did (4 marks)						
d)	Negate the following statements:(i) If Mark appreciates Discrete Mathematics, then he will become a pure Mathematics	matics major (2 marks)						
	$Vx \in IR, x^2 > 0$ (ii)	(2 marks)						

Question Five

		$\sqrt{2}$	2					
a)	Use contradiction to prove that is irrational.					(6 marks)		
b)	With the negation of each of the following proportions: $Vx \in IR, x > 3 \rightarrow x^2 > 9$							
	(i)					(2 marks)		
	(ii)	Every polynomial f	unction is conti	nuous.		(2 marks)		
	(iii)	There exists a triang	gle with the pro	perty that the s	um of angles is great	er than 1800		
						(2 marks)		
c)	 c) Consider the universal conditional proposition: <i>V</i>x ∈ <i>D</i>, <i>P</i>(x) <i>Q</i>(x) if then (i) Find the contra positive (ii) Find the converse 							
$Vx \in D, P(x)$								
d)	Write in the fo	rm the	proposition "e	very real numb	er is either positive,	negative or 0" (2 marks)		
e)	If C is contradiction, determine the validity of the following for any p. $\sim P \rightarrow C$					(2 marks)		
	:. P							