

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE
 BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC/CIVIL ENGINEERING

SPH 2170: PHSYSICS I

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: OCTOBER 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
SECTION A (COMPULSORY)
Question One
Where necessary take $\mathrm{g}=9.81 \mathrm{~ms}^{-2}$
a) Use dimensional to check the equation n

$$
V=2 a x
$$

where V is velocity, a is acceleration and x is displacement.
b) Derive Newton's second law of motion
c) A person is on a ride that lifts him in a vertical circle of radius r. At the highest point, the person is upside down and his apparent weight is half his normal weight. What is his speed at this point?
(4 marks)
d) Differentiate between the terms stress and strain

$$
X=A \cos (\text { not }+\theta)
$$

e) An object executing a simple harmonic motion has a displacement A if the displacement from the mean position is x , show that:

$$
\frac{d^{2} y}{d x^{2}}+\cos ^{2} x=0
$$

(i) The differential equation is given as
(ii) Find the acceleration of the body.
f) A person is at the top of a building of height 100 m a ball A is through upwards at $5 \mathrm{~ms}^{-1}$ and ball B is thrown downwards at $20 \mathrm{~m} \mathrm{~ms}^{-1}$ two seconds later.
(i) When do the balls collide
(ii) What are their velocities when they collide
g) State the first law of thermo dynameters
h) State TWO applications of a diabatic process in engineering practices
i) Differentiate between transverse and longitudinal waves
j) A body is projected upwards such that it passes through two points A and B is at time T_{A} and T_{B} as shown below:

$$
\mathrm{T}_{\mathrm{A}}
$$

If between initial time T_{A} and final time T_{S} the displacement is h. use the information above to show that:

$$
g=\frac{\delta h}{\left(T_{A}-T_{B}\right)^{2}}
$$

SECTION B (Answer any TWO questions from this section)

Question Two

a) Define:
(i) Projectile
(ii) Trajectory
b) Show that:

$$
h m=\frac{\left(u_{o}^{2} \sin ^{2}\right)}{g}
$$

(i) Maximum height of a projectile is
(3 marks)

$$
T=\frac{\left(2 u_{o} \sin \theta\right)}{g}
$$

(ii)

$$
\text { Rman }=\frac{u_{0}^{2}}{g}
$$

(iii) Maximum range:

$$
y=a x-b x^{2}
$$

c) Show that the trajectory of a projectile is parabolic i.e. it is in the form

$$
\theta=50^{\circ}
$$

d) A projectile is fired from a level ground at an angle velocity is 45 mls , find the:
(i) Maximum height reached above the horizontal. If the initial
(ii) Range
(iii) The velocity after 3.0s

Question Three

a) Define the following terms:
(i) Specific heat capacity
(2 marks)
(ii) Latent heat
(2 marks)
b) How many 20 q ice cubes whose initial temperature is $-10^{\circ} \mathrm{C}$ must be added temperature is $90^{\circ} \mathrm{C}$, for the final mixture to have a temperature of $10^{\circ} \mathrm{C}$.
Take specific heat capacity of water as $4200 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$, specific heat of ice as $2100 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$ and latent heat of fusion of ice as $3.36 \times 10^{5} \mathrm{Jkg}^{-1}$
(4 marks)
c) A 1.50 m wire has a mass of 8.70 g and is under a tension of 120 N . The wire is held rigidly at both ends and set into oscillation. Calculate:
(i) The speed of the waves on the wire
(3 marks)
(ii) The frequencies on the waves that produce two loop standing waves
d) As a 40 N block slides a plan inclined at an angle 25° to the horizontal its acceleration is $0.8 \mathrm{~m} / \mathrm{s}^{2}$ directed up the plane.
(i) Indicate the forces acting on the block
(ii) Calculate the frictional force acting on the block
(2 marks)
(iii) Determine the coefficient of kinetic friction between the block and the plane

Question Four

a) Two objects of mass m_{1} and m_{2} are hung vertically over a frictionless pulley of negligible mass. The system accelerates as shown below $\quad \mathrm{m}_{2}>\mathrm{m}_{1}$

M_{1}

Determine:
(i) The magnitude of acceleration of the two objects given that $\mathrm{m}_{1}=1 \mathrm{~kg}$ and $\mathrm{m}_{2}=2 \mathrm{~kg}$
(8 marks)
(ii) The tension in the cord supporting the two masses
(4 marks)
$\mu_{s}=0.2 \quad \vec{F}$
b) A block of mass $m=1.2 \mathrm{~kg}$ is held against a rough wall by a force directed at an angle $\alpha=10^{\circ}$ \vec{F}
above the horizontal as shown below. What is the maximum value of for the block to remain stationary?
c) A piece of copier originally 305 mm is pulled with stress of 276 Mpa , if the deformation is entirely elastic, what would be the resultant elongation (E of copper $=110 \mathrm{Gpa}$)
(3 marks)

Question Five

a) State TWO characteristics of an ideal gas
b) A flask contains a mixture of hydrogen, neon and mercury vapour.
(i) Compare the average kinetic energies of the three above
(ii) Compare their root mean square speeds. Give reasons
c) Give gas modules chosen at random are found to have speeds of $500,600,800,700$ and $900 \mathrm{~ms}^{-1}$. Find the root mean square speed? Is it the same as the average speed?
d) Find the volume of 1 mole of any ideal gas at STP (i.e. a pressure of $1.013 \times 105 \mathrm{~Pa}$ and temperature of 273K)
e) The equation of a certain travelling traverse wave is:

$$
y=2 \sin 2 \pi(t / 0.01+x / 30)
$$

where x and y are in cm and t in seconds. What are:
(i) The amplitude
(2 marks)
(ii) The wavelength
(iii) The frequency and
(2 marks)
(iv) The speed of propagation of the wave
(2 marks)

