TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
DEGREE IN BACHELOR OF SCIENCE IN CIVIL ENGINEERING DEGREE IN BACHELOR OF ELECTRICAL \& ELECTRONIC ENGINEERING

SPH 2170: PHYSICS I

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Find the values of x, y and z in the expression:

$$
F=k m^{x} v^{y} \alpha^{z}
$$

where F is the force, m the mass r the radius and k a dimensions constant.
(3 marks)
b) For an object of mass moving in a circular path of radius r with speed , prove that Given that:

$$
a=\frac{v^{2}}{r}
$$

c) A particle is moving in a straight line with a constant acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$. As it passes a point A, its speed is $20 \mathrm{~m} / \mathrm{s}$. What is its speed 10 s after passing A?
(3 marks)
d) (i) Differentiate between static and kinetic friction.
(1 mark)
(ii) An object is placed on a plant which is then raised from one end. If the object starts to slip when θ
the plank is at an angle of to horizontal, obtain the expression for the coefficient of static friction θ in terms of
(4 marks)
e) (i) State the Kinetic theory of matter
(ii) While at $0^{\circ} \mathrm{C}$, a square steel bar of 20 m side is fixed at both ends so that it cannot expand. If the temperature is raised to $20^{\circ} \mathrm{C}$, what force would be exerted on the support at the ends? $y=2 \times 10^{12} \mathrm{~N} / \mathrm{m}^{2}$ and coefficient of linear expansion of steel is $10^{-50} \mathrm{C}^{-1}$
f) A ray of light is incident in air at an angle of 40° to the normal to one face of a 60° glass prism. Calculate the angle through which the ray has been deviated by the time it emerges from the prism. (reflaction index of glass with respect to air $=1.5$)
(4 marks)
g) In a young's double slit experiment a total of 23 bright fringes occupying a distance of 3.9 mm were visible in the travelling microscope. Te microscope was focused on a plane which was 31 cm from the slit and the wavelength of light being used was $5.5 \times 10^{-7} \mathrm{~m}$. What was the separation of the double slit?
(4 marks)

Question Two

a) A gas bubble from an underwater explosion oscillates with a period which is proportional to $p^{a} d^{b} E^{c}$ where p is hydrostatic pressure, d is the density of water and E is the energy of the explosion. Find the value of a, b and c
b) Derive the formula for angular momentum of a rigid body
c) A 1 kg stone attached to the end of a 60 cm chain is revolving at C rate of $3 \mathrm{rev} / \mathrm{s}$
(i) What is its angular momentum
(ii) If after 30 s it is making only $1 \mathrm{rev} / \mathrm{s}$, find the mean torque.
d) Show that the intermolecular force and the potential energy between molecules is related by the equation:

$$
F=\frac{-d E}{d v}
$$

Explain what the negative sign represents.

Question Three

a) (i) Define S.H.M
(ii) Draw a graph showing how y varies with t for S.H.M.
(iii) Prove that the period of S.H
(4 marks)

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

b) (i) State Newton's Laws of motion
(ii) Show that: F = ma
c) A body of mass 5 kg is pulled up a rough inclined plane inclined at 30° to the horizontal by a force of 40 N acting parallel to the plane. If a frictional force of 5 N exists between the plane and the body:
(i) Draw a diagram showing all the forces acting on the body.
(2 marks)
(ii) Find the acceleration of the body
(2 marks)

Question Four

a) Define the following terms:
(i) Perfectly elastic body
(ii) Plastic body
b) What is meant by the term strain? How does it differ from stress? Name THREE types of strains.
(5 marks)
c) What force is required to stretch a steel wire to double its length when its area of cross-section $1 \mathrm{~cm}^{2}$ and $\mathrm{Y}=2 \times 10^{-11} \mathrm{~N} / \mathrm{m}^{2}$
d) Use dimensional analysis to derive Stroke's Law
(10 marks

Question Five

a) (i) State the laws of refraction
(ii) An object is placed infront of a converging lens of focal length 30 cm . If a virtual image is formed 60 cm from the lens, find the position of the object.
b) What are the conditions necessary for:
(i) Dark interference fringes
(1 mark)
(ii) Bright interference fringes
c) List 3 differences between interference and diffraction.
d) (i) Define magnifying power of a microscope
(ii) With the aid of a ray diagram, describe the working of a compound microscope.
e) (i) Define the term beat
(1 mark)
(ii) What is Doppler effect?
f) Explain what happens to apparent pitch when:
(i) Source of sound approaches stationery observer
(ii) An observer moves away from stationery source of sound

