

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 14S)

APS 2101: PHYSICS I

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

Question One (Compulsory)

- **a)** Define the following terms:
 - (i) Resistance
 - (ii) Reactance
 - (iii) Impedance (6 marks)
- **b)** Determine the colour codes for the following resistor:

(i) $1.9M\Omega$

 $330K\Omega \pm 10\%$

(ii)

 $470\Omega \pm 5\%$

(iii)

 $4.7M\Omega \pm 2\%$

(iv)

(4 marks)

- c) A capacitors is connected in series to a resistor of 100K Ω for charging. It took 0.05μ s to charge the capacitor to its time constant. Calculate the value of that capacitor. (4 marks)
- **d)** A transformer with a turns ratio of 8:1 is supplied with 110V, 60Hz. If the secondary current is 10A. Calculate:
 - (i) Primary current
 - (ii) Secondary voltage
 - (iii) Input power

(6 marks)

Question Two

- **a)** Define the following terms:
 - (i) Depletion layer
 - (ii) Base
 - (iii) Emitter
 - (iv) Collector
- **b)** With the aid of circuit diagrams, explain the bipolar transistor configurations. **(6 marks)**
- c) Using graph, sketches explain the following bipolar transistor characteristics. (10 marks)
 - (i) Input
 - (ii) Output
 - (iii) Transfer characteristics

Question Three

a) Using circuit diagram and wave form diagrams, explain the operation of a full wave bridge rectifier.

(10 marks)

- **b)** Three resistors of $200K\Omega$, $100~K\Omega$ and $80~K\Omega$ are connected in parallel they are then connected in series to $50~K\Omega$ and $75~K\Omega$ resistors. The network is then supplied with 50V~d.c.
 - (i) Calculate the total resistance of the circuit

- (ii) Voltage drop in the parallel circuit
- (iii) Total current in the circuit
- (iv) Current through 20k, 100k and 80k resistors
- **(v)** Total power dissipated by the circuit

(10 marks)

Question Four

- a) Three capacitors of $300\mu F$, $20\mu F$ and $400\mu F$ are connected in series and then connected to $600\mu F$ capacitor in parallel. The network is then supplied with 30V d.c.
 - (i) Draw the circuit diagram
 - (ii) Calculate the total capacitance in the circuit
 - (iii) Charge across the 3600µF capacitor
 - **(iv)** Energy in the circuit
- **b)** Define the following terms:
 - (i) Intrinsic semiconductor
 - (ii) Extrinsic semiconductor
 - (iii) Doping

Question Five

- **a)** Define the following terms:
 - (i) Capacitance
 - (ii) Time constant
 - (iii) Transmission ratio
 - (iv) Self inductance
- (v) Mutual inductance

(10 marks)

b) With the aid of a graph, explain the ohm's law

(3 marks)

c) Using symbols differentiate between step-up and step-down transform.

(2 marks)

- **d)** Calculate the maximum and the minimum values of the following resistors given the colour codes of the following resistors given the colour codes below: (all answers in $K\Omega$)
 - (i) Red, green, yellow
 - (ii) Blue, black, purple, silver
 - (iii) Yellow, red, yellow, gold

(5 marks)