TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

 SciencesDEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN ANALYTICAL CHEMISTRY (DAC 14S)

APS 2101: PHYSICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Resistance
(ii) Reactance
(iii) Impedance
b) Determine the colour codes for the following resistor:

$$
\pm 20 \%
$$

(i) $1.9 \mathrm{M} \Omega$
$330 K \Omega \pm 10 \%$
(ii)

$$
470 \Omega \pm 5 \%
$$

(iii)
$4.7 M \Omega \pm 2 \%$
(iv)
(4 marks)
c) A capacitors is connected in series to a resistor of $100 \mathrm{~K} \Omega$ for charging. It took $0.05 \mu \mathrm{~s}$ to charge the capacitor to its time constant. Calculate the value of that capacitor.
d) A transformer with a turns ratio of $8: 1$ is supplied with $110 \mathrm{~V}, 60 \mathrm{~Hz}$. If the secondary current is 10 A . Calculate:
(i) Primary current
(ii) Secondary voltage
(iii) Input power
(6 marks)

Question Two

a) Define the following terms:
(i) Depletion layer
(ii) Base
(iii) Emitter
(iv) Collector
b) With the aid of circuit diagrams, explain the bipolar transistor configurations.
c) Using graph, sketches explain the following bipolar transistor characteristics.
(i) Input
(ii) Output
(iii) Transfer characteristics

Question Three

a) Using circuit diagram and wave form diagrams, explain the operation of a full wave bridge rectifier.
(10 marks)
b) Three resistors of $200 \mathrm{~K} \Omega, 100 \mathrm{~K} \Omega$ and $80 \mathrm{~K} \Omega$ are connected in parallel they are then connected in series to $50 \mathrm{~K} \Omega$ and $75 \mathrm{~K} \Omega$ resistors. The network is then supplied with 50 V d.c.
(i) Calculate the total resistance of the circuit
(ii) Voltage drop in the parallel circuit
(iii) Total current in the circuit
(iv) Current through 20k, 100k and 80 k resistors
(v) Total power dissipated by the circuit
(10 marks)

Question Four

a) Three capacitors of $300 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$ and $400 \mu \mathrm{~F}$ are connected in series and then connected to $600 \mu \mathrm{~F}$ capacitor in parallel. The network is then supplied with 30 V d.c.
(i) Draw the circuit diagram
(ii) Calculate the total capacitance in the circuit
(iii) Charge across the $3600 \mu \mathrm{~F}$ capacitor
(iv) Energy in the circuit
b) Define the following terms:
(i) Intrinsic semiconductor
(ii) Extrinsic semiconductor
(iii) Doping

Question Five

a) Define the following terms:
(i) Capacitance
(ii) Time constant
(iii) Transmission ratio
(iv) Self inductance
(v) Mutual inductance
b) With the aid of a graph, explain the ohm's law
c) Using symbols differentiate between step-up and step-down transform.
d) Calculate the maximum and the minimum values of the following resistors given the colour codes of the following resistors given the colour codes below: (all answers in $\mathrm{K} \Omega$)
(i) Red, green, yellow
(ii) Blue, black, purple, silver
(iii) Yellow, red, yellow, gold

