

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SPH 2173: PHYSICS FOR ENGINEERS I

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions in **TWO** sections **A & B** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

SECTION A (COMPULSORY)

Question One

a) Determine the dimensions of the following constants.

(i)	Acceleration	(1 mark)
(ii)	Density	(1 mark)
(iii)	Work	(1 mark)

- b) If the units of length, mass and force are chosen as fundamental units, what will be the dimensions of time in terms of these units. (2 marks)
- **c)** State Kepler's laws of planetary motion

(3 marks)

 θ

d) Show that for a circular track of radius r and angle of banking :

$$\theta = \tan - 1 \left(\frac{v^2}{vg} \right)$$

where v is the maximum velocity for negotiating the track and of is acceleration due to gravity. (4 marks)

e) (i) Define simple harmonic motion (1 mark)
 (ii) A mass vibrates through an amplitude of 2cm in simple harmonic motion with a period IS. What is the distance moved from the centre of oscillation in 0.4s (3 marks)

f) Define the following terms:

(i)	Stress	(1 mark)
(ii)	Strain	(1 mark)
(iii)	Elasticity	(1 mark)

g) While at 0°C, a square steel plate of side 20cm is fixed at both ends so that it cannot expand. If its temperature is raised to 20°C, what force would be excited on the support at the ends. Young's modulus $Y = 2 \times 1012Nm2$ and coefficient of expansion of steel = $10-5^{\circ}C^{-1}$ (5 marks)

h)	h) State the following laws:			
	(i)	Boyle's law	(1 mark)	
	(ii)	Charles's law	(1 mark)	

i) A standard resistance coil marked 30 is found to have a true resistance of 3.114 at 300K. Calculate the temperature at which the making is correct. (The temperature coefficient of the material of the coil is 4.2×10^{-30} C⁻¹) (4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Define the following terms:

(i)	Kinetics	(1 mark)
(ii)	Kinematics	(1 mark)

b) The position coordinate of a particle which is confined to move a long a straight line is given by:

 $S = 24t^3 - 12t + 3$

Where S is measured in meters from the origin and t is the seconds. Determine:

- (i) The time required for the particle to reach a velocity of 72ms^{-1} from its initial condition at t = 0 (3 marks)
- (ii) The acceleration of the particle when $v = 30 ms^{-1}$ (3 marks)

(iii) The net displacement of the particle during the interval from t = 35 to t = 45

(3 marks)

c) Show that the relationship between the linear velocity v of the particle moving with angular velocity in a circular path of radius r is given by v = rw (4 marks)

A stone of mass 0.6kg attached to a string of length 0.5m is whirled in a horizontal circle at a

u)	 constant speed. If the tension in string is 30N before its breaks, calculate: (i) The maximum angular speed of the stone (ii) The maximum number of revolutions it can make 	(3 marks) (2 marks)		
Question Three				
	Define hence derive the formula for radius of gyration	(5 marks)		
b)	Derive the moment of inertia of a thin uniform rod.(i) About an axis passing through its centre and perpendicular to its length.(ii) A long an axis passing through one of its ends.	(5 marks) (4 marks)		
c)	 A 1kg stone attached to the end of a 60cm chain is revolving at a rate of 3 rev s⁻¹ (i) What is its angular momentum (ii) If after 30s it is making only 1 rev s⁻¹ find the mean torque. 	(3 marks) (3 marks)		
Qu	lestion Four			
a)	State Hooke's law	(1 mark)		
b)	Differentiate between the three types of elastic modulus	(3 marks)		
c) Show that the modulus of torsion of a cylinder is given by: $\frac{\pi n a^4}{2L}$				
	Where the symbols have their usual meaning	(8 marks)		
d)	What force is required to stretch a steel wire to double its length when its area of cro and Young's modulus = 2×10^{-11} Nm ⁻²	ss-section is 1cm ² (4 marks)		
e)	Find the maximum load which may be placed on a steel wire of diameter 1mm if the must not exceed $1/1000$ and the Young's modulus of steel is 2×10^{11} Pa.	e permitted strain (4 marks)		
Question Five				
a)	 What is: (i) Coefficient of viscosity (ii) Terminal velocity 	(1 mark) (1 mark)		

b) Show that the terminal velocity of a sphere falling through a viscous fluid is given by:

d)

$$v_t = \frac{2r^2(Ts - Tf)g}{an}$$

State what the symbols stand for.

c) Define the following terms:

Specific heat capacity (i)

Latent heat of fusion (ii)

- **d)** A carolimeter with heat capacity of 80J0C⁻¹ contains 50g of water at 40°C. What mass of ice at 0°C needs to be added in order to reduce the temperature to 10°C? Assume no heat is lost to the surroundings. (Specific heat capacity of water = 4.2×10^3 Jkg^{-1o}C, specific latent heat of ice = 3.4×10^3 Jkg^{-1o}C, specific latent heat of ice 105Jkg⁻¹. (5 marks)
- e) An ideal gas has a volume of 100cm² at 2 x 105 Pa and 27°C. What is its volume of 100cm² at 2 x 10⁵ Pa and 27°C. What is its volume at 5 x 105 Pa and 60°C. (3 marks)

(6 marks)

(2 marks)

(2 marks)

Page 4