

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN COMMUNITY HEALTH & MANAGEMENT

AMA 2201: BIOSTATISTICS

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of **FIVE** questions in **TWO** sections **A** & **B**

© 2013 - Technical University of Mombasa

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FIVE** printed pages **SECTION A (COMPULSORY)**

Question One

- a) Define the following terms as used in biostatistics:
 - (i) A statistic
 - (ii) A parameter
- **b)** Given that $X = X_1$, X_2 , X_3 , $Y = Y_1$, Y_2 , Y_3 where $X_1 = -5$, $X_2 = 2$, $X_3 = 1$, $Y_2 = 4$, $Y_3 = 3$ Find:
 - (i) $\sum_{i=1}^{3} x \sum_{l=1}^{3} y^{2}$ (i) $\sum_{i=1}^{3} xy$ (2 marks) (2 marks)
- **c)** For each of the following varieties state whether they are quantitative or quantitative and give 3 possible measurements or observations of the variate.
 - (i) Height
 - (ii) Age
 - (iii) Eye colour
 - (iv) Town of birth
 - (v) Distance from college.

 $\sum(x-160) = 240$

and

(5 marks)

(1 mark)

(1 mark)

d) The heights of a sample of 80 female students are summarized by the equation $\sum (x-160)^2 = 8720$

. Find the standard deviation of the heights of the 80 female students.

(5 marks)

e) Compute the Harmonic mean of the following data:

Class	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Frequency	5	7	13	3	2

⁽² marks)

(2 marks)

f) Show that the following statements hold:

 $\sum_{l=1}^{1} x_{l} - \sum_{l=2}^{2} i = x_{1}$

(i)

(ii)
$$\sum_{l=1}^{4} i^{-1} = 1.08333$$
 (2 marks)

g) Find the mean of the following data using an appropriate assumed mean.

	Class	5 – 20	21 – 36	37 – 52	53 - 68	69 - 84	85 - 100		
	F	6	12	17	11	3	1		
	a) Give TWO uses of ogives (2 marks)								
h)	Give TWO use	es of ogives				(2 ma	rks)		

Question Two

a) Give TWO differences between a histogram and a bar chart.	(2 marks)
 b) State whether each of the following is a discrete or continuous variable. (i) The number of components in a machine (ii) The capacity of a container (iii) Time (iv) Height (v) Cost in kshs 	(1 mark) (1 mark) (1 mark) (1 mark) (1 mark)
c) Show that the variance of a given sample is given by: $S^{2} = \frac{\sum fx^{2}}{N} - \left(\frac{\sum fx}{N}\right)^{2}$	
	(6 marks)
d) Give THREE advantages of an arithmetic mean	(3 marks)
e) Define what is meant by the term 'conditional probability.	(2 marks)
f) State any TWO measures of dispersion include.	(2 marks)
Question Three	
a) Show that the sum of squares of the deviations of a set of data from any number so $\alpha = \overline{X}$ \overline{X}	
when where is the arithmetic mean.	(5 marks)
b) Compute the mean Absolute Deviation (MAD) for the data given below.	(6 marks)
Mass (gms) Frequency	

491.5 - 495.5	4
495.5 - 499.5	11
499.5 - 503.5	18
503.5 - 507.5	10
507.5 - 511.5	7

c) At the end of a Biostatistics course, Diana sits two written papers, S and S_2 and hands in a piece of course work. Her marks out of 100 were 76 for S, and 67 for S_2 , and the gained 81 marks for her course work. Her overall percentage mark for the course is weighted so that the two written papers count for 40% each and the course work for 20%. Find Diana's overall percentage mark. (3 marks)

c) Calculate the range and semi interquartile range of the data below.

Class	10 - 20	20 – 30	30 - 40	40 - 60	50 - 60	60 - 70
Frequency	12	19	5	10	9	6

Question Four

a) The followings are results of an assessment test given to Biostatistics students that was marked out of 30 marks.

19.6	19.8	19.9	19.7	19.8	19.8	19.6	19.9	20.0
3	2	6	5	6	2	1	7	7
19.8	20.1	19.5	20.0	19.7	19.9	19.6	19.8	19.9
9	6	6	5	2	6	8	7	0
19.7	19.9	20.0	19.8	19.8	19.7	19.7	19.7	19.8
3	3	3	6	1	7	8	5	7
19.6	19.7	19.9	20.0	20.1	20.0	19.8		
6	7	9	0	1	1	4		

Arran	ge the marks into equal classes of 0.09mm and hence determine:	(7 marks)
(i)	The lower class boundary of the third class	(2 marks)
(ii)	The central value of the fifth class	(2 marks)

b) A racing car courts FIVE laps of circuit in a race, each lap covered at the following average speeds (in mph)

12.4, 132.8, 125.7, 126.9, 134.9

Find the average speed of the car for the whole race	(5 marks)

c) List FOUR advantages of the median

Question Five

- **a)** Group the following data taking a class limit of 4 using:
 - (i)Inclusive form of grouping(3 marks)(ii)Exclusive form of grouping(3 marks)

Find the quartiles from the following distribution:

(4 marks)

(6 marks)

		Age in years	Number of patients	
		15 – 20	10	
		20 – 25	40	
		25 – 30	52	
		30 – 35	68	
		35 – 40	95	
(iii) Compute	the	40 - 45	75	standard deviation of the
following da		45 – 50	45	
	<u>) – 10</u>	50 – 55	20	40 - 50
No. of Students 7	/	55 – 60	5	10
			•	

And hence find the coefficient of standard deviation and coefficient of variation. (6 marks)

(iv) Show that the sum of deviations of a set from its mean is zero. (3 marks)

(v) Given the following data, find the mode for the data:

Class	20 - 24	25 – 29	30 - 34	35 – 39	40-44	45 - 49
Frequency	3	15	30	44	34	10 (3 marks)

(vi) Give **TWO** areas where statistics can be applied.

(2 marks)