

TECHNICAL UNIVERSITY OF MOMBASA
Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE
(BSMCS)

APS 4108: PHYSICS

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Where necessary use:

$$
K=\frac{1}{4 \pi \varepsilon_{0}}=8.988 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}
$$

- Coulomb’s Law constant

$$
\varepsilon_{0}=8.854 \times 10^{-12} C^{2} / N m^{2}
$$

- Permittivity of free space,
- elementary charge, $\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
- electron mass, $\mathrm{m}_{\mathrm{e}}=9.11 \times 0^{-31} \mathrm{~kg}$
- proton mass, $\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
- \quad 1electron volt $=1.00 \mathrm{v}=1.602 \times 10^{-19} \mathrm{~J}$
- 1 gauss $=10^{-4} \mathrm{~T}$

Question One (Compulsory)

a) (i) A useful method of expressing very small or very large numbers is:
A. Arabic numerals
B. Roman numerals
C. Scientific notation
D. The metric system
(2 marks)
(ii) Electric conductors behave differently from electric insulators because conductors have
A. net charge
B. free charge
C. induced charge
(2 marks)
(iii) All of the following are base units of the SI system except:
A. Kilogram
B. Kelvin
C. Metre
D. Volt
(2 marks)
(iv) The magnetic force on a current carrying wire between the poles of a magnet as shown in the figure points:

I
A. Upwards
B. Downward
C. Left
D. Right
E. Into the page
F. Out of the page
b) Draw electric field lines for:
(i) a single positive charge
(2 marks)
(ii) two equal and opposite charges
c) Excess electrons are placed on a small lead sphere so that its net charge is $-3.2 \times 10^{-9} \mathrm{C}$. Find the number of excess electrons on the sphere.
d) Find the length of a copper wire of diameter 0.6 mm that will give a resistance of 2.5 (Resistivity of copper is $1.72 \times 10^{-8} \mathrm{~m}$

$$
\varepsilon=N B A \omega \sin \omega t
$$

e) The output voltage from an AC generator is given by
(i) If the AC generator has a square $12 \mathrm{~cm} \times 12 \mathrm{~cm}$ armature coil with 480turns rotating at 720 rpm in a 0.5 T magnetic field, how large is its peak voltage?
(4 marks)
(ii) Find the root mean square voltage of the generator.
f) The terminal voltage of a battery is 7.5 V with no load connected to it. When connected to a light bulb that draws a current of 0.5 A , its terminal voltage drops to 6.2 V :
(i) What is the resistance of the light bulb?
(3 marks)
(ii) What is the internal resistance of the bulb
(3 marks)

Question Two

a) State Coulomb's law
(2 marks)

$$
q_{1}=+3.0 \mu c
$$

b) Three charges are arranged along the x-axis. Charges is at the origin and charge $q_{2}=-5.0 \mu c \quad-8.0 \mu c$

$$
\text { is at } \mathrm{x}=0.2 \mathrm{~m} \text {; charge } \mathrm{q}_{3}=
$$

(i) Where is q_{3} located if the net force on q_{1} is 7.0 N in the negative x -axis?
(ii) Find the magnitude and direction of the electric field due to the three charges at a point 0.25 m directly above q_{3}

Question Three

$$
V_{A}=+20.0 K V
$$

a) An electron moves from point A where the potential is
to point B where the potential is $V_{B}=-40.0 \mathrm{KV}$
these potentials are due to other charges.
(i) What is the change in potential energy?
(3 marks)
(ii) What change in kinetic energy does the electron experience?
(iii) Give the answer to (ii) above in electron volts and comment on the results.
b) The current below contains an arrangement of resistors connected to an ideal 30 V battery that has no internal resistance.

(i) What pair of resistors is in series (if any) and in parallel (if any)?
(3 marks)
(ii) What is the equivalent resistance connected to the battery
(iii) What is the voltage drop across the 4 resistor

Question Four

a) Answer TRUE or FALSE:
(i) Two long wires with parallel currents repel each other
(2 marks)
(ii) The magnetic force on a moving charged particle is always perpendicular to the magnetic field \vec{B}
(2 marks)

$$
\vec{E}
$$

(iii) At any point in space, the electric field is in the direction perpendicular to the electric force of a positively charged particle at that point.
b) A uniform magnetic field B causes protons to move in cyclotron orbits of radius 12 cm at a frequency of 250 MHz (i.e. 250×10^{6} revolutions per second)
(i) Show on the diagram above, the direction in which the protons circulate
(3 marks)
(ii) At what speed v are the protons moving
(iii) How strong is the magnetic field in testa?

