# TECHNICAL UNIVERSITY OF MOMBASA <br> Faculty of Applied \& Health 

## Sciences

# DEPARTMENT OF MATHEMATICS \& PHYSICS <br> UNIVERSITY EXAMINATION FOR DEGREE OF: <br> BACHELOR OF TECHNOLOGY IN APPLIED TECHNOLOGY (BTAP) 

AMA 4212: VECTOR ANALYSIS

## END OF SEMESTER EXAMINATION <br> SERIES: APRIL 2015 <br> TIME ALLOWED: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)


$$
x=t+2 t^{2},=3 t-4, z=-6 t+2
$$

e) Find the unit tangent vector at any point on the curve

$$
x=1-y^{2}
$$

f) Let C be the curve
from ( $0,-1$ ) to (0, 1). Evaluate:

$$
\int_{C} y^{3} d x+c^{2} d y
$$

g) Convert the point $(-2,-2,1)$ from Cartesian coordinate to:
(i) Cylindrical coordinates
(ii) Spherical coordinates
(4 marks)

## Question Two

a) State Green's theorem in the plane
b) Verify Green's theorem in the plane

$$
\oint 3 x^{2}-8 y^{2} d x+4 y-6 x y d y
$$

$$
y=\sqrt{x},=x^{2}
$$

where C is the boundary of the region defined by

$$
A=3 i-2 j+k, B=i-3 j+5 k, C=2 i+j-4 k
$$

c) Show that the vectors form a right triangle. Support your answer
(8 marks)

## Question Three

$$
v=x y z i+3 x^{2} y j+\left(x z^{2}-y 2 z\right) k
$$

a) Find the divergence and curl of the vector at the pt $(3,1,-2)$
(8 marks)
b) Calculate the area of the triangle $\operatorname{PQR}$ where $\mathrm{P}(2,4,-7), \mathrm{Q}=(3,7,18)$ and $\mathrm{R}=(-5,12,8)$
$\operatorname{grad} \phi \quad \phi=x^{3}+y^{3}+3 x y z$
c) Find if
(4 marks)
Question Four

$$
\vec{a}=18 \cos 3 t i-3 \sin 2 t j+6 t R \quad \vec{v}
$$

a) The acceleration of a particle at any time $t$ is given by . If the velocity $\vec{r} \quad \vec{v} \quad \vec{r}$ and displacement are zero at $\mathrm{t}=0$, find and at any time t .
b) State Stoke's theorem relating the lien and the surface integrals

$$
\oint_{C} F \cdot d r \quad F=y^{2} i+x^{2} j-(x+z) k
$$

c) Evaluate by Stoke's theorem, where triangle with vertices at $(0,0,0),((1,0,0)$ and $(1,3,0)$
and $C$ is the boundary of the
(6 marks)

## Question Five

$$
f(t)=\frac{\cos t}{1+a^{2} t^{2}}, \frac{\sin t}{\sqrt{1+a^{2} t^{2}}}, \frac{-a t}{\sqrt{1+a^{2} t^{2}}}, \text { with } a \neq 0
$$

$\|f(t)\|=1$
a) Let
show that for all t

$$
(x-2)^{2}+(y-1) 2+z^{2}=9
$$

b) Write the equation
c) Find $U X(v \times w)$ for $U=(1,2,4), v=2,2,0, w=(1,3,0)$
d) (i) Define the gradient function $f(x, y)$ in $\mathfrak{R}^{2}$

$$
\frac{\partial f}{\partial x}(x, y) \quad \frac{\partial f}{\partial y}(x, y) \quad f(x, y)=x^{2} y+y+y^{3}
$$

(ii) Determine and for the function (2 marks)
(iii) Find gradient $f(x, y)$ at point $(1,2)$

