

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF TECHNOLOGY IN APPLIED TECHNOLOGY (BTAP)

AMA 4212: VECTOR ANALYSIS

END OF SEMESTER EXAMINATION SERIES: APRIL 2015

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **TWO** printed pages

Question One (Compulsory)

a)	Find the angle θ between the vector $v = (2,1,-1)$ $w = (3,-4,1)$ and	(4 marks)
b)	$\ vxw\ $ Prove that the area of a parallelogram PQRS with sides v and w is	(4 marks)
	$a = i + 3j - k, \ b = -i + j - 5k$ $c = 3i - 2j + 7k$	$(a \times b \times c)$
C)	Consider vectors and . Find the vector	(4 marks)
d)	Define the following terms:	
,	(i) Divergence of vector v(x, y, z) v(x, y, z)	(2 marks)
	(ii) Cure of vector	(2 marks)

g) Convert the point (-2, -2, 1) from Cartesian coordinate to:
(i) Cylindrical coordinates
(ii) Spherical coordinates
(iii) Spherical coordinates
(4 marks)
Question Two
a) State Green's theorem in the plane

$$\oint 3x^2 - 8y^2 dx + 4y - 6xy dy$$

where C is the boundary of the region defined by
 $A = 3i - 2j + k, B = i - 3j + 5k, C = 2i + j - 4k$
c) Show that the vectors
(5 marks)
(4 marks)
(9 marks)
 $y = \sqrt{x}, = x^2$
where C is the boundary of the region defined by
 $A = 3i - 2j + k, B = i - 3j + 5k, C = 2i + j - 4k$

 $v = xyzi + 3x^2yj + (xz^2 - y2z)k$ a) Find the divergence and curl of the vector at the pt (3, 1, -2) (8 marks) b) Calculate the area of the triangle PQR where P(2, 4, -7), Q = (3, 7, 18) and R = (-5, 12, 8)(8 marks) $grad\phi \quad \phi = x^3 + y^3 + 3xyz$ if (4 marks) c) Find

Question Four

- $a = 18\cos 3t \ i 3\sin 2tj + 6tR$ v a) The acceleration of a particle at any time t is given by . If the velocity r r and displacement are zero at t = 0, find and at any time t. (10 marks)
- b) State Stoke's theorem relating the lien and the surface integrals (4 marks)
- ∮*F*.dr $F = y^2 i + x^2 j - (x+z)k$ c) Evaluate by Stoke's theorem, where and C is the boundary of the triangle with vertices at (0, 0, 0), ((1, 0, 0) and (1, 3, 0) (6 marks)

Question Five

when t = 2(5 marks)

e) Find the unit tangent vector at any point on the curve

 $x = 1 - y^2$ **f)** Let C be the curve from (0, -1) to (0, 1). Evaluate: $\int_C y^3 dx + c^2 dy$

g

C

a

(8 marks) your answer

$$f(t) = \frac{\cos t}{1 + a^2 t^2}, \frac{\sin t}{\sqrt{1 + a^2 t^2}}, \frac{-at}{\sqrt{1 + a^2 t^2}}, \text{ with } a \neq 0 \qquad \| f(t) \| = 1$$

a) Let show that for all t (5 marks)
$$(x - 2)^2 + (y - 1)^2 + z^2 = 9$$

b) Write the equation in spherical coordinate (5 marks)
$$Ux(v \times w) \qquad U = (1, 2, 4), v = 2, 2, 0, w = (1, 3, 0)$$

c) Find for (5 marks)
d) (i) Define the gradient function f(x, y) in (2 marks)

$$\frac{\partial f}{\partial x}(x,y) \qquad \frac{\partial f}{\partial y}(x,y) \qquad f(x,y) = x^2y + y + y^3$$

- (ii) Determine and for the function
- (iii) Find gradient f(x, y) at point (1, 2)

Page 3

(2 marks) (1 mark)