TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BSME/BTRE/BTAP)

AAMA 4209: CALCULUS III

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: JUNE 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\sum_{n=0}^{\infty} \frac{2 n}{n!}
$$

a) Use ratio test to determine the convergence or divergence of
b) It took 20 seconds for a thermometer to rise from $10^{\circ} \mathrm{F}$ to $212^{\circ} \mathrm{F}$ where it was taken from a freezer and placed in boiling water. Show that somewhere along the way the mercury was rising at exactly $10.1^{\circ} \mathrm{F} / \mathrm{s}$
c) Express as a ratio of two integers the sum to infinity the recurring decimal

$$
\int_{0}^{4} \frac{d x}{\sqrt[3]{x-1}}
$$

d) Evaluate the improper integral below
e) Find the area of the region lying inside the circle

$$
r=1+\cos \theta
$$

candiod
(6 marks)

$$
\frac{d z}{d t} \quad z=x^{2}+3 x y+5 y^{2}
$$

f) Find the total derivative when

$$
\begin{align*}
& \text { where } x=\sin t \text { and } y=\cos t \tag{4marks}\\
& \qquad f(x)=1 / x
\end{align*}
$$

g) Find the first five terms of the Taylors series generated by at $x=2$
a) Verify that $\mathrm{f}(\mathrm{x})$ is a probability density function satisfying if for $0 \leq x \leq 10$
and all other values of x
(4 marks)

$$
\frac{d f}{d t}
$$

b) Find the value of at $t=0$ if $f(x, y, z)=x y+z$ and $x=\cos t, y=\sin t$ and $z=t$

$$
f(x)=x+\frac{1}{x},[1 / 2,2]
$$

c) Given that satisfy the hypothesis of the mean value theorem in the interval, determine the value of C
(4 marks)

$$
f(x)=\sin x \quad \pi / 3
$$

d) Represent as the sum of the Taylor series centred at

Question Three

$$
\lim _{x \rightarrow \infty}\left\{\frac{5 x^{2}+8 x-3}{3 x^{2}+2}\right\}
$$

a) Evaluate

$$
y^{2}=2 x+6
$$

b) Find the area enclosed by the line $\mathrm{y}=\mathrm{x}-1$ and the parabola

$$
\sum_{k=1}^{\infty} \frac{3^{k} k^{2}}{k!}
$$

c) Test the series below for convergence or divergence

$$
5-\frac{10}{3}+\frac{20}{9}-\frac{40}{27}+\ldots
$$

d) Find the sum of the geometric series

$$
f(x)=e^{3 x}
$$

e) Using Maclaurins series find the first five terms of the expansion

Question Four

a) Define the following terms:
(i) A bounded sequence
(2 marks)
(ii) Increasing sequence
(2 marks)

$$
r=2 \cos \theta \quad r=\cos 2 \theta
$$

b) Sketch the curves with polar equation and on the same axes and hence find a Cartesian equation of the curve
c) State the indeterminate form arising from:

$$
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}
$$

(i)

$$
\lim _{x \rightarrow 1}\left\{\frac{\ln x}{x-1}\right\}
$$

(ii)
d) Sketch and find the volume of the solid obtained by rotating the region bounded by $y=x^{3}, y=8, x=0$ about the y-axis
(5 marks)

Question Five

a) Evaluate the triple integral:

$$
\int_{0}^{1} \int_{0}^{x^{2}} \int_{x y}^{x+y}(x y z) d z d y d x
$$

(4 marks)

$$
x=t^{2}, y=t^{3}
$$

b) Find the length of the arc of the curve that lies between the points $(1,1)$ and $(4,8)$
c) Find the rectangular co-ordinates of the given polar points:

$$
(3, \pi / 6)
$$

(i)

$$
(\sqrt{2},-\pi / 4)
$$

(ii)

$$
u(x, y)=\ln \left(1+x y^{2}\right)
$$

d) Given

$$
\begin{equation*}
2 \frac{\partial^{2} y}{\partial x^{2}}+y^{3} \frac{\partial^{2} y}{\partial y \partial x}=0 \tag{5marks}
\end{equation*}
$$

show that
e) Find the general formula for the following sequence

