

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN:

BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL & AUTOMOTIVE ENGINEERING

SMA 2172: CALCULUS I

END OF SEMESTER EXAMINATION SERIES: AUGUST 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

($f \circ g$) ⁻¹ (x) $f(x) = 3x - 4$ $g(x) = 4 - x^2$ a) Find if and	(5 marks)
$y = \frac{\sin^2 x}{\ln x} \qquad \frac{dy}{dx}$ b) Given that find c) Evaluate the following limits $\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2}$	(4 marks) (3 marks)
t→0 [(i)	(3 marks)

© 2014 - Technical University of Mombasa

Page 1

(i)

$$\lim_{x \to 2} \frac{t^2 - 5t - 9}{2t^2 + 3t^3}$$
(i)

$$f(x) = \frac{1}{x-2}$$
(i) Find the range and domain of
Find the derivative of the following function using first principles:

$$f(x) = 2x^2 - 16x + 35$$
(4 marks)
(5) Suppose that the amount of water in a holding tank at t minutes is given by
Determine whether:
(i) The volume of water in the tank is increasing or decreasing at $t = 1$ minute.
(ii) The volume of water in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(ii) The volume of water in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(ii) The volume of water in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(iii) The volume of water in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(i) The volume of mater in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(ii) The volume of mater in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(iii) The volume of mater in the tank is changing faster at $t = 1$ or $t = 5$ minutes.
(i) The volume of material target at $t = 1$ or $t = 5$ minutes.
(ii) The volume of the target at $t = 1$ or $t = 5$ minutes.
(iii) The volume of the target at $t = 1$ or $t = 5$ minutes.
(i) Theremitate with respect to x :
 $y = b(\frac{x+1}{\sqrt{x-2}})$
(i) $y = x^{1/2}$
(ii) $y = x^{1/2}$
(i) $y = x^{1/2}$
(i) $y = x^{1/2}$
(ii) $y = x^{1/2}$
(i) $y = x^{1/2}$
(ii) State the THREE conditions for a function to be continuous at a point $x = a$.
(iii) Show that is not continuous at $x = 0$
(4 marks)

.

- b) Determine all the critical points for the function
- c) A water tank has the shape of an inverted line with base radius 2m and height 4m. If water is being pumped into the tank at a rate of 2m³/min, find the rate at which the level is rising when the water is 3m deep. (5 marks) $v = \sqrt{1 - x^2}$

d) Differentiate with respect to x

Question Four

dy

	-	<u>l</u> x	
a)	Find	if:	
		$y = \frac{u-1}{u+1} \qquad u = x^2$	
	(i)	and	(4 marks)
		$y = 6\frac{x^2 - 1}{x^4 + 5x + 1}$	
	(ii)	$y = (x^3 - 2x + 3)(4x^2 + 1)$	(3 marks)
		$y = (x^3 - 2x + 3)(4x^2 + 1)$	
	(iii)		(3 marks)
b)		$f \circ g \circ h$ (x) $f(x) = \sqrt{x-1}$ $g(x) = x^2 + 2$ $h(x) = x + 3$ and	. Hence find the range
	f∘g	h(x)	U
	, 5		(5 marks)

the x-axis and the line at x = 3 and x = 5. **c)** Find the area enclosed by the curve (5 marks)

Question Five

b) Show that

- a) A cylindrical can is to be made to hold 1l of oil. Find the dimensions that will minimize the cost of the metal to manufacture. (6 marks)
- $y = \frac{dx}{\sqrt{x}}$ dy $y = \sqrt{x}$ dx from first principles if from first principles if c) Find d) Define the following terms:
 - Function (2 marks) (i) (ii) Monotonic function (2 marks)

 $\frac{d}{dx}(a^x) = a^x \ln a$

 $f(x) = 6x^5 + 33x^4 - 3x^3 - 100$

(5 marks)

(3 marks)

(6 marks)

(4 marks)

of

 $y = 3x^2 + 2$