

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health 

## Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS<br>UNIVERSITY EXAMINATION FOR DEGREE IN:<br>\section*{BACHELOR OF SCIENCE IN CIVIL ENGINEERING}<br>BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL \& AUTOMOTIVE ENGINEERING

SMA 2172: CALCULUS I

## END OF SEMESTER EXAMINATION <br> SERIES: AUGUST 2014 <br> TIME ALLOWED: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\begin{aligned}
& \text { a) Find }(f \circ g)^{-1}(x) \quad f(x)=3 x-4 \quad g(x)=4-x^{2} \\
& \qquad y=\frac{\sin ^{2} x}{\ln x} \quad \frac{d y}{d x} \text { and } \\
& \text { bind } \\
& \text { b) Given that }{ }^{\text {a marks) }} \\
& \text { c) Evaluate the following limits } \\
& \lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}} \\
& \text { (i) }
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} \frac{t^{2}-5 t-9}{2 t^{4}+3 t^{3}}
$$

(ii)

$$
f(x)=\frac{1}{x-2}
$$

d) Find the range and domain of
e) Find the derivative of the following function using first principles:

$$
\begin{equation*}
f(x)=2 x^{2}-16 x+35 \tag{4marks}
\end{equation*}
$$

$$
V(t)=2 t^{2}-16 t++35
$$

f) Suppose that the amount of water in a holding tank at t minutes is given by

Determine whether:
(i) The volume of water in the tank is increasing or decreasing at $t=1$ minute. (2 marks)
(ii) The volume of water in the tank is changing faster at $\mathrm{t}=1$ or $\mathrm{t}=5$ minutes.

$$
\frac{4 x^{10}-2 x^{4}+15 x^{2}}{x^{3}} d x
$$

g) Evaluate

## Question Two

$$
x^{2}+x y+y^{2}=7
$$

a) Find the equation of tangent to the curve
at the point $(1,2)$

$$
x=80 t \quad y=64 t-16 t^{2} \quad \frac{d y}{d x}=0
$$

b) Given that and . Find the value of $t$ for which
c) Differentiate with respect to $x$ :

$$
\begin{equation*}
y=\ln \left(\frac{x+1}{\sqrt{x-2}}\right) \tag{i}
\end{equation*}
$$

(4 marks)

$$
y=x^{\sqrt{x}}
$$

(ii)

$$
3 \sqrt{27.05}
$$

d) Use differentials to approximate

## Question Three

a) (i) State the THREE conditions for a function to be continuous at a point $\mathrm{x}=\mathrm{a}$.

$$
f(x)=\frac{|x|}{x}
$$

(ii) Show that
is not continuous at $\mathrm{x}=0$

$$
f(x)=6 x^{5}+33 x^{4}-3 x^{3}-100
$$

b) Determine all the critical points for the function

## (5 marks)

c) A water tank has the shape of an inverted line with base radius 2 m and height 4 m . If water is being pumped into the tank at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$, find the rate at which the level is rising when the water is 3 m deep.
(5 marks)

$$
y=\sqrt{1-x^{2}}
$$

d) Differentiate with respect to x

## Question Four

$$
\frac{d y}{d x}
$$

a) Find if:

$$
y=\frac{u-1}{u+1} \quad u=x^{2}
$$

(i) and
(4 marks)

$$
y=6 \frac{x^{2}-1}{x^{4}+5 x+1}
$$

(ii)

$$
y=\left(x^{3}-2 x+3\right)\left(4 x^{2}+1\right)
$$

(iii)
b) Find $(f \circ g \circ h)(x)$ given that $f(x)=\sqrt{x-1} \quad g(x)=x^{2}+2 \quad h(x)=x+3$ and $\quad$. Hence find the range of $f \circ g \circ h(x)$

$$
y=3 x^{2}+2
$$

c) Find the area enclosed by the curve
the x -axis and the line at $\mathrm{x}=3$ and $\mathrm{x}=5$.
(5 marks)

## Question Five

a) A cylindrical can is to be made to hold 11 of oil. Find the dimensions that will minimize the cost of the metal to manufacture.

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a
$$

b) Show that
(4 marks)

$$
\frac{d y}{d x} \quad y=\frac{d x}{\sqrt{x}} \quad y=\sqrt{x}
$$

c) Find from first principles if
from first principles if
d) Define the following terms:
(i) Function
(ii) Monotonic function

