

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS

BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGEY

AMA 4117: PROBABILITY & STATISTICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables

- Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

a) Define the following terms:	
(i) Sample space	(1 mark)
(ii) Random variable	(1 mark)

b) Ten measurements of impact energy on steel at 60°C age given as 64.1, 64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2 and 64.3. Calculate:

(i)	The mean	(3 marks)
(ii)	Median	(2 marks)

(iii) Construct 95% confidence interval if the standard deviation is assumed to be IJ given that impact energy is normally distributed. (4 marks)

Page 1

		$P(A \cap B) =$	= 0.1	
c)	If $P(A) = 03$, $P(B) = 03$	= 0.2 and	. Determine:	
	$P(A \cup B)$			
	(i)			(2 marks)
	$P(A' \cap B)$			
	(ii)			(2 marks)
	$P(A' \cup B)$			
	(iii)			(2 marks)

1

``

d) An optical inspection is 0;98 suppose that three parts system is to distinguish among different part types. The probability of a correct classification of any part are inspected and the classifications are independent. let the random variable X denote the number of parts that are correctly classified. Determine:

(i)	The probability distribution of X	(4 marks)
(ii)	The mean of X	(2 marks)
(iii)	Variance of X	(3 marks)

e) Let X be a random variable following a binomial distribution with parameter p and n, determine the probability generating function of X.(4 marks)

Question Two

- a) Each sample of water has a 10% chance of containing a particular organic pollutant. Assume that the samples are independent with regard to the presence of the pollutant. Find the probability that in the next 18 samples:
 - (i) Exactly 2 contain pollutant.
 (ii) Determine the expected number of pollutants in the sample.
 (2 marks)
 (2 marks)
- b) The number of flaws in bolts of cloth is a textile manufacturing is assumed to be Poisson distributed with a mean of 0.1 flaw per square meter. What is the probability that:

(i)	There are two flaws in one square metre of cloth?	(2 marks)
(ii)	No flaw in 20m ² of a cloth.	(4 marks)

- c) The compressive strength of samples of cement can be modeled by a normal distribution with a mean of 6000kg/cm² and a standard deviation of 100kg/cm². What is the probability that:
 - (i) A sample's strength is less than 6500

(3 marks)

(3 marks)

(ii) What is the probability that a sample's strength is between 5800 and 5900kg/cm².

Question Three

a) The table below shows weight of bolts in a company.

Class	Frequency
10 – 12	3
13 – 15	14

10 - 10	25
19 – 21	12
22 - 24	8
25 – 27	4
28 - 30	1

22

16

10

Determine:

- (i) Mean
- (ii) Median
- (iii) Mode
- (iv) Standard deviation
- (v) Quartile range

Question Four

- **a)** Define the terms:
 - (i) Independent events
 - (ii) Conditional events
- **b)** Disks of poly carbonate plastic from a supplier are analyzed for a scratch and 9 shock, resistance. The results from 100 disks are summarized as follows:

		Shock	Resistance
		High	Low
Scratch	High	70	9
Resistance	Low	16	5

Let A denote the event that a disk has high resistance and let B denote the event that a disk has high scratch resistance. Determine the:

P(A / B)	
(i)	(3 marks)
$P(B \mid A)$	
(ii)	(3 marks)
c) Are event A and B independent?	(2 marks)
d) Define the following terms:	
(i) Type I error	(1 mark)
(ii) Type II error	(1 mark)

e) Specifications require that the mean burning rate of a solid propellant must be 50cm. It is known that $\delta = 2$ the standard deviation of burning rate is and type 1 error probability is 0.05. A sample of size $\frac{1}{x} = 51.3 cm/s$ 25 gives a sample average during rate of . Test the hypothesis.

(4 marks)

(4 marks)

(3 marks)

(3 marks)

(5 marks)

(5 marks)

Ho; $\mu 0 = 50$ Hi; $\mu 0 \neq 50$

at 5% level of significance

(5 marks)

Question Five

The table below shows temperature and heat loss:

	Temp (X)	20	20	20	40	40	40	60	
	Heat Loss (Y)	86	80	77	78	84	75	30	
a) Draw a scatter	plot of the above dat	a.							(3 marks)
b) Calculate the correlation coefficient between X and y.						(5 marks)			
c) Determine the coefficient of determination between X and y.						(3 marks)			
d) Construct a regression model between X and Y.					(5 marks)				
(i) The val	sion to determine: lue of Y when X is 21 sidue when X is 60	L							(2 marks) (2 marks)