

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS
BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGEY
AMA 4117: PROBABILITY \& STATISTICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the following terms:

(i)	Sample space	(1 mark)
(ii)	Random variable	(1 mark)

b) Ten measurements of impact energy on steel at $60^{\circ} \mathrm{C}$ age given as $64.1,64.7,64.5,64.6,64.5,64.3$, 64.6, 64.8, 64.2 and 64.3. Calculate:
(i) The mean
(3 marks)
(ii) Median
(iii) Construct 95% confidence interval if the standard deviation is assumed to be IJ given that impact energy is normally distributed.

$$
P(A \cap B)=0.1
$$

c) If $\mathrm{P}(\mathrm{A})=03, \mathrm{P}(\mathrm{B})=0.2$ and
. Determine:

$$
P(A \cup B)
$$

(i)

$$
P\left(A^{\prime} \cap B\right)
$$

(ii)

$$
P\left(A^{\prime} \cup B\right)
$$

(iii)
(2 marks)
(2 marks)
(2 marks)
d) An optical inspection is $0 ; 98$ suppose that three parts system is to distinguish among different part types. The probability of a correct classification of any part are inspected and the classifications are independent. let the random variable X denote the number of parts that are correctly classified. Determine:
(i) The probability distribution of X
(4 marks)
(ii) The mean of X
(iii) Variance of X
e) Let X be a random variable following a binomial distribution with parameter p and n , determine the probability generating function of X .
(4 marks)

Question Two

a) Each sample of water has a 10% chance of containing a particular organic pollutant. Assume that the samples are independent with regard to the presence of the pollutant. Find the probability that in the next 18 samples:
(i) Exactly 2 contain pollutant.
(2 marks)
(ii) Determine the expected number of pollutants in the sample.
(2 marks)
b) The number of flaws in bolts of cloth is a textile manufacturing is assumed to be Poisson distributed with a mean of 0.1 flaw per square meter. What is the probability that:
(i) There are two flaws in one square metre of cloth?
(ii) No flaw in $20 \mathrm{~m}^{2}$ of a cloth.
c) The compressive strength of samples of cement can be modeled by a normal distribution with a mean of $6000 \mathrm{~kg} / \mathrm{cm}^{2}$ and a standard deviation of $100 \mathrm{~kg} / \mathrm{cm}^{2}$. What is the probability that:
(i) A sample's strength is less than 6500
(ii) What is the probability that a sample's strength is between 5800 and $5900 \mathrm{~kg} / \mathrm{cm}^{2}$.

Question Three

a) The table below shows weight of bolts in a company.

Class	Frequency
$10-12$	3
$13-15$	14

$16-18$	23
$19-21$	12
$22-24$	8
$25-27$	4
$28-30$	1

Determine:
(i) Mean
(4 marks)
(ii) Median
(3 marks)
(iii) Mode (3 marks)
(iv) Standard deviation
(v) Quartile range

Question Four

a) Define the terms:
(i) Independent events
(ii) Conditional events
(4 marks)
b) Disks of poly carbonate plastic from a supplier are analyzed for a scratch and 9 shock, resistance. The results from 100 disks are summarized as follows:

		Shock	Resistance
		High	Low
Scratch	High	70	9
Resistance	Low	16	5

Let A denote the event that a disk has high resistance and let B denote the event that a disk has high scratch resistance. Determine the:

$$
P(A / B)
$$

(i)

$$
P(B / A)
$$

(ii)
c) Are event A and B independent?
d) Define the following terms:
(i) Type I error
(1 mark)
(ii) Type II error
e) Specifications require that the mean burning rate of a solid propellant must be 50 cm . It is known that $\delta=2$
the standard deviation of burning rate is and type 1 error probability is 0.05 . A sample of size

$$
\bar{x}=51.3 \mathrm{~cm} / \mathrm{s}
$$

25 gives a sample average during rate of . Test the hypothesis.

Но; $\mu 0=50$
Hi; $\mu 0 \neq 50$
at 5\% level of significance

Question Five

The table below shows temperature and heat loss:

Temp (X)	20	20	20	40	40	40	60
Heat Loss (Y)	86	80	77	78	84	75	30

a) Draw a scatter plot of the above data.
b) Calculate the correlation coefficient between X and y.
c) Determine the coefficient of determination between X and y.
d) Construct a regression model between X and Y .
e) Use the regression to determine:
(i) The value of Y when X is 21
(ii) The residue when X is 60

