TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF ENGINEERING IN MECHANICAL ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

EMG 2414: NUMERICAL METHODS FOR ENGINEERS

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: JUNE/JULY 2015
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
A=\left[\begin{array}{cc}
3 & 2-i \\
4+3 i & -5+2 i
\end{array}\right]
$$

a) Find the adjoin of a matrix A given
(2 marks)

$$
\int_{1}^{1.8} y(x) d x
$$

b) Using Romberg's' integration method, find the value of given tabular values below
starting with trapezoidal rule for the
(6 marks)

x	1	1.1	1.2	1.3	1.4	1.5	1.6	1.73 .10 7	1.8
$y=f(x)$	1.543	1.669	1.811	1.971	2.151	2.352	2.577	2.828	3.107

$$
f t=L_{2} L_{1} f(t)=L f(t)
$$

c) Verify that L_{1}, L_{2} given that $L_{1}=2 D+3$ and $L_{2}=D^{2}+2 D+1$ while $f(t)=t^{3}$
(4 marks)

$$
A=\left[\begin{array}{cc}
\lambda & 2 \\
2 & \tau-3
\end{array}\right]
$$

d) Consider the matrix find all possible value of to make A non-singular (3 marks)
e) Determine the characteristic equation of A, the Eigen values and corresponding Eigen vectors hence

$$
A=\left(\begin{array}{cc}
4 & -1 \tag{8marks}\\
-4 & 4
\end{array}\right)
$$

general solution for the system $x^{\prime}=A x$ given by

$$
f(t)=e^{-|t|} \quad f(t)= \begin{cases}e^{t}, & t<0 \\ e^{-t} & t \geq 0\end{cases}
$$

f) Find the Fourier transform of where

Question Two

a) Define linear independence of function

$$
A=\left(\begin{array}{ccc}
1 & -1 & -1 \\
3 & -1 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

b) By use of row reduction find the inverse of the matrix A given by
(8 marks)

$$
\frac{d y}{d t}=t+y
$$

c) Solve the following differential equation
with the initial condition $\mathrm{y}(0)=1$, using the fourth

$$
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)
$$

order Runge Kutta method from $\mathrm{t}=0$ to t 0.45 taking $\mathrm{h}=0.1$ and where

$$
\begin{aligned}
& k_{1}=n f(t n, y n) \\
& k_{2}=n f\left(t_{n}+h / 2, y n+k_{1} / 2\right) \\
& k_{3}=h f\left(t_{n}+\frac{h}{2}, y_{n}+k_{2} / 2\right) \\
& k_{4}=h f\left(t_{n}+h, y_{n}+k_{3}\right)
\end{aligned}
$$

Question Three

$$
A=\left(\begin{array}{ccc}
3 & -2 & 1 \\
5 & 6 & 2 \\
1 & 0 & -3
\end{array}\right)
$$

a) Determine the adjoint of a matrix A if hence compute A^{-1} the inverse of the matrix

$$
\begin{aligned}
& \frac{d x}{d t}=6 x-3 y \\
& \frac{d y}{d t}=2 x+y
\end{aligned}
$$

b) Solve the system
c) Use Simpson's one third rule and the composite trapezoidal rule to evaluate the approximate value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$
taking $\mathrm{h}=0.25$ (working to 4 dp) compute the solution
(6 marks)

Question Four

$$
y^{1}=x-y^{2} \quad y(0)=1
$$

a) Using the Taylor's series for $\mathrm{y}(\mathrm{x})$ find $\mathrm{y}(0.1)$ if $\mathrm{y}(\mathrm{x})$ satisfies and
b) Solve the simultaneous equation using Crammers rule:

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-3 y+4 z=33 \\
& 3 x-2 y-2 z=2
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
1+j & 2 j \\
-3 j & 1-4 j
\end{array}\right]
$$

c) Find the determinant of matrix A given that

$$
f(t)=e^{k t} \quad 0 \leq t<\infty
$$

d) Determine Fourier transform of

Question Five

a) Use the Gauss Legendre quadrature formula to compute the integral:

$$
I=\int_{5}^{12} \frac{d x}{x} \text { for } \mathrm{n}=3 \text { in the interval }(-1,1)
$$

b) Using the D operator method find the value of x from the system:

$$
\begin{align*}
& 2 \frac{d x}{d t}-2 \frac{d y}{d t}-3 x=t \\
& 2 \frac{d x}{d t}+2 d \frac{y}{d t}+3 x+8 y=2 \tag{7marks}
\end{align*}
$$

$$
\frac{d^{4} x}{d t^{4}}+5 \frac{d^{3} x}{d t^{3}}+\frac{3 d^{2} x}{d t^{2}}-\frac{2 d x}{d t}+6 x=t^{2}
$$

c) Convert the equation
to a normal linear system of four differential equations in four unknowns
(4 marks)

$$
\int_{0}^{1} e^{x} d x
$$

d) Use mid-ordinate rule with $\mathrm{n}=10$ to approximate the integral

