TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
CERTIFICATE IN:
BUILDING \& CIVIL ENGINEERING MECHANICAL ENGINEERING ELECTRICAL \& ELECTRONIC ENGINEERING

AMA 1151: ENGINEERING MATHEMATICS II

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: JUNE/JULY 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) (i) Convert the angle $45^{\circ} 36^{\prime} 18^{\prime \prime}$ to decimal degree formal.
(2 marks)
(ii) Convert 18.48 to degree minutes and seconds
(2 marks)

$$
7 \sqrt{2} \quad \pi / 4
$$

b) (i) A rod of length cm is inclined to the horizontal at an angle of radians. A shadow is cast immediately below it from a lamp directly overhead. What is the length of the shadow?
(ii) What is the new length of the of the rods inclination is changed to to the vertical.
(4 marks)

$$
\frac{1-\sin \theta \tan \theta}{1+\sec \theta}=\cos \theta
$$

(iii) Verify the identity
c) Simplify:

$$
(3+j 4)(2+j 5)
$$

(i)

$$
\frac{4-j 5}{2-j}
$$

(ii)
d) (i) Express in polar form $\mathrm{z}=-4+\mathrm{j} 2$ with aid of a diagram

$$
z=x+j y \quad|z-1|=5
$$

(ii) If find the equation of the locus
(4 marks)
e) Find $\tanh ^{-1} \mathrm{x}$ in \log form
(4 marks) $\frac{d y}{d x} \quad \frac{d y}{d x}$

$$
y=2 x^{4}-3 x^{3}+4 x-x+5
$$

obtain an expression for

$$
\begin{equation*}
\text { at } x=-3 \tag{3marks}
\end{equation*}
$$

and hence calculate the value of
f) If

Question Two

$$
\begin{equation*}
y-3 x^{2}-7 x \tag{6marks}
\end{equation*}
$$

a) Find the derivative of from first principle

$$
y=2 x^{2}+3 x-5
$$

b) (i) Find the gradient of at the point $(2,9)$
(ii) Offer ' t ' seconds a particle has travelled $(2+3+7 t) \mathrm{m}$. Find the speed of the particles after 8 seconds

$$
y=x^{3}+6 x^{2}-36 x+5
$$

c) Find the maximum and minimum of the function

Question Three

a) Simplify:

$$
\text { (i) }(3+j 4)(3-j 4)
$$

(2 marks)

$$
(2+j 3)^{2^{3}}
$$

(ii)

$$
z=3+j 4 \quad w=12+j 5
$$

b) Given that and write down the moduli and arguments with aid of a diagram of:
(i) z
(ii) w

$$
\frac{1}{2}
$$

(iii)
marks)

$$
(e j t)^{n}=e j^{(n e)}
$$

c) By definition Demoivres theorem is expressed for all n. Use the theorem to:
(i) Obtain expansion of $\cos 3 \theta$ and $\sin 3 \theta$ in terms of power $\cos \theta$ and $\sin \theta$
(ii) the speed (in km/h) at the instant the breaks are applied

Question Four
$\sec \theta=1.4723 \quad \theta$
a) Given where is an acute angle. Determine:
(i)
$\cot \theta$
(ii)
b) Prove the following trigonometric identities:

$$
\cos \theta \sin \theta=\frac{\sin 2 \theta}{\tan \theta}
$$

(i)

$$
\frac{(\operatorname{cosec} \theta+\cot \theta)+\tan \theta}{\tan \theta+\sec \theta}=\frac{\cos \theta+1}{\sin \theta+1}
$$

(ii)
c) (i) Find the angle labeled in figure 1 below:
(ii) An aerial of height 4.1 m is the erected on a slope of 15°. It will be secured by two cables each making 35° with the aerial as shown in figure 2 below. Find the length of the longer cable.
(2 marks)
Figure 2

$$
|z|=10
$$

(iii) Given and $\arg \mathrm{z}=120^{\circ}$ write down z

Question Five

Express in partial fractions, the following:

$$
\frac{x^{2}+3 x-10}{x^{2}-2 x-3}
$$

(i)

$$
\frac{15 x^{2}-x+2}{(x-5)\left(3 x^{2}+4 x-2\right)}
$$

(ii)

$$
\frac{8 x^{2}-14 x-10}{x^{3}-4 x^{2}+x+6}
$$

(iii)

