

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN CIVIL, ELECTRICAL AND

MECHANICAL ENGINEERING
(BSCE/BEME/BSEE)
SMA 2271/SMA 2278: ORDINARY DIFFERENTIAL EQUATIONS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)
a) Explain what is meant by the phrase "complete solution" of a differential equation.

$$
\frac{d y}{d x}=\frac{y^{2}-1}{x}
$$

b) Solve the differential equation
c) Solve the linear fractional equation:

$$
\frac{d y}{d x}=\frac{x+y-3}{x-y-1}
$$

(5 marks)

$$
\frac{d x}{d t}+2 x=4 e^{3 t}
$$

d) Using Laplace transform solve
at $\mathrm{t}=0$ if $\mathrm{x}=1$
$\left(3 x^{2}+4 x y\right) d x+\left(2 x^{2}+2 y\right) d y=0$
e) Solve using the method of exact differential equation
f) Using the D-operator method find the complete solution if

$$
\left(x^{3}-3 x^{2}+2 x\right) \frac{d^{2} y}{d x^{2}}+(x-2) x \frac{d y}{d x}+4 x^{2} y=0
$$

g) Identify all regular singular points of
(5 marks)

Question Two

$$
y^{\prime \prime}+a^{2} y=0 \quad y=e^{m x}
$$

a) (i) Solve the equation where a is a constent by letting
(4 marks)

$$
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-2 y=0
$$

(5 marks)
$\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 y=6 e^{3 x}+7 e^{-2 x}-\log 2$
has two linearly independent solution of the form
(3 marks)

$$
\frac{d y}{d x}-\frac{1}{2}\left(1+\frac{1}{x}\right) y=\frac{3}{x} y^{3}
$$

b) Solve the Bernoulli's equation of the form
(6 marks)
c) Use Laplace transform to solve the IVP

$$
\begin{aligned}
& x^{\prime \prime}-3 x^{\prime}+2 x=2 e^{3 t} \\
& x_{0}=x(0)=5 \\
& x_{1}=\frac{d(x 0)}{d t}=7
\end{aligned}
$$

(7 marks)

Question Three

$$
\left(D^{2}+D-2\right) y=2 x-40 \cos 2 x
$$

a) Solve the equation by the method of undetermined coefficient.
(10 marks)
b) Find the singular points of the differential equation and determine whether they are regular or ordinary points:

$$
x^{2}(1-x) y^{\prime \prime}+(1-x) y^{\prime}+y=0
$$

c) Solve the initial value problem:

$$
\left(x^{2}+9\right) \frac{d y}{d x}+x y=0 ; \quad y(0)=1
$$

Question Four

a) State THREE reasons why the differential equation below is non-linear.

$$
\begin{gathered}
x \frac{d^{2} y}{d x^{2}}+\left(x \frac{d y}{d x}-y\right)^{2}-3 y^{2}=0 \\
y d x-x d y=0
\end{gathered}
$$

b) (i) Show that is not exact.
(ii) Show that is an integrating factor for the equation in b (i) above
(iii) Solve the equation using the integrating factor method.

$$
\frac{x y}{x^{2}+y^{2}}
$$

c) (i) Show that
is a homogeneous function in x and y
(2 marks)

$$
\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}
$$

(ii) Using the substitution $\mathrm{y}=\mathrm{vx}$ transform the equation into an equation containing v and x only
(3 marks)
(iii) Hence solve the resulting equation using the method of separation of variables in (ii) above.
(3 marks)

Question Five

$$
y y^{\prime \prime}=(y)^{2} \quad y^{\prime}=p \quad y^{\prime \prime}=p \frac{d p}{d y}
$$

a) Solve by reducing the order, by substitution and
b) Given the differential equation:

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+x y=0
$$

(i) Normalize the equation
(ii) Show that $\mathrm{x}=0$ is an ordinary point for the equation
Ω
c) An electric circuit has a constant electromotive force $E=40 \mathrm{v}$, a resistor of 10 and an inductance 0.2 Henry, with initial current 0 at $t=0$ and basic differential equation is:

$$
L \frac{d i}{d t}+R i=E
$$

Determine the steady current after a long time.

$$
\left(D^{2}-5 D+6\right) y=e^{x} \cos 2 x
$$

d) Use the inverse D operator method to solve

