

TECHNICAL UNIVERSITY OF MOMBASA UKUNDA CAMPUS Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN COMPUTER MAINTENANCE (CICM 13S)

AMA 1152: MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Define the following terms as used in mathematics:
(i) A sequence
(ii) An equation
(2 marks)
b) The $6^{\text {th }}$ term of an Arithmetic Progression (AP) is -23 and the $10^{\text {th }}$ term is -35 . Find the first term, the common difference and the sum of the first 15 terms of the series
c) A racing car counts five laps of a circuit in a race, each lap covered at the following average speed (in mph).

$$
\text { 123.4, 132.8, 125.7, 126.9, } 134.9
$$

Find the average speed of the car for the whole race.
(3 marks)
d) Find the mean for the following data using an appropriate assumed mean.

Class	$5-20$	$21-36$	$37-52$	$53-60$	$69-84$	$85-100$
Frequency	6	12	17	11	3	1

(5 marks)
e) Solve the following set of equations using Gaussian elimination method.

$$
\begin{aligned}
& x_{1}-4 x_{2}-2 x_{3}=21 \\
& 2 x_{1}+x_{2}+2 x_{3}=3 \\
& 3 x_{1}+2 x_{2}-x_{3}=-2
\end{aligned}
$$

f) Show that the sum of n terms of an arithmetic series is given by:

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d)
$$

$$
\log _{b} N=\frac{\log _{a} N}{\log _{a} b} \quad \log _{7} 83.64
$$

g) Show that and hence find

Question Two

a) A box has 6 blue beads and 4 red beads 3 beads are drawn at random without replacement. What is the probability that:
(i) They are all blue
(ii) They are exactly 2 blue beads
(iii) There is at least 1 blue bead
b) Given the following set of equations, find the unknowns:

$$
\begin{aligned}
& 5(x+2 y)-4(3 x+4 z)-2(x+3 y-5 z)=16 \\
& 2(3 x-y)+3(y-2 z)+4(2 x-3 y+z)=-16 \\
& 4(y-2 z)+2(2 x-4 y-3)-3(x+4 y-2 z)=-62
\end{aligned}
$$

c) Solve the following equation by completing the square:

$$
2 x^{2}+10 x-7=0
$$

(4 marks)
d) State whether or not the following can be expressed as a product of linear factors:

$$
2 x^{2}-9 x+18=0
$$

(i)

$$
4 x^{2}+11 x+28=0
$$

(ii)

Question Three

a) Differentiate between symmetric and skew symmetric matrices giving 1 example of each.
b) Given the following matrix, A , find its inverse.

$$
A=\left(\begin{array}{lll}
2 & 7 & 4 \tag{6marks}\\
3 & 1 & 6 \\
5 & 0 & 8
\end{array}\right)
$$

c) Insert three arithmetic means between 12 and 26

$$
u_{n}=n^{2}+3 n+1 \quad \sum_{i=1}^{n}\left(n^{2}+3 n+1\right)
$$

d) If , determine an expression for

Question Four

a) Derive the quadratic formula and hence solve the following equation:

$$
\begin{equation*}
2 x^{2}-3 x-4=0 \tag{6marks}
\end{equation*}
$$

b) Simplify the following equation:

$$
\begin{array}{r}
E=\left(5 x^{2} y^{-3 / 2} z^{1 / 4}\right)^{2} \times\left(4 x^{4} y^{2} z\right)^{1 / 2} \tag{4marks}\\
7\left(14.3^{x+5}\right) \times 6.4^{2 x}=294
\end{array}
$$

c) Solve the equation
d) Show that the sum of n terms of a geometric series is given by:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

e) Determine the following antilogarithms to the base stated.
(i) Antilog 2.4572 (base 6)
(1 mark)
(ii) Antilog 3.2684 (base 10)

Question Five

a) The lengths (in mm) of 40 spindles were increased with the following results:

20.9	20.5	20.8	20.7	20.8	20.6	20.5	20.8	20.7	20.6
0	7	6	4	2	3	3	9	5	5
20.7	21.0	20.7	20.4	20.9	20.7	20.7	20.6	21.0	20.8
1	3	2	1	4	5	9	5	8	9
20.5	20.8	20.9	20.7	20.6	20.9	21.0	21.1	20.8	20.7
0	8	7	8	1	2	7	6	0	7
20.8	20.7	20.6	20.9	20.8	20.6	20.7	20.8	20.5	20.9
2	2	0	0	6	8	5	8	6	4

Display the data above using a class size of 0.10

(8 marks)

b) Let $X_{1}, X_{2} \ldots \ldots . . X_{n}$ be a sample of a given population show that the sum of squares of the deviations $\bar{X}=0 \quad \bar{X}$
of a set of data from any number say B is least when B - where \quad is the arithmetic mean
(3 marks)
c) Solve for x in the following equation:

$$
\frac{3}{x-2}+\frac{5}{x-3}-\frac{8}{x+3}=0
$$

d) Given the following matrices:

$$
A=\left(\begin{array}{lll}
4 & 2 & 3 \\
4 & 2 & 4
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
3 & 4
\end{array}\right) \quad C=\left(\begin{array}{lll}
1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right)
$$

Find:

$$
A+2 B
$$

(i)
(ii) A_{2} (2 marks)
(iii) Predict the order of matrix A.B.C

