

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR THE BACHELOR OF TECHNOLOGY IN APPLIED CHEMISTRY
 (BTAC 12J)

APS 4102: PHYSICS FOR CHEMISTS

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2013
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

$$
\text { Take : } \begin{gathered}
\varepsilon_{o}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} \\
k=1 /\left(4 \pi \varepsilon_{o}\right)=9 \times 109 \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
G=9.8 \mathrm{~ms}^{-2} \\
\\
\\
1.6 \times 10^{-19} \mathrm{C}
\end{gathered}
$$

Electron charge =

$$
9.11 \times 10^{-31} \mathrm{~kg}
$$

Mass of Electron =

$$
M_{o}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}
$$

Permeability constraint $=$

$$
1.7 \times 10^{-27} \mathrm{~kg}
$$

Proton Mass =

$$
\begin{aligned}
& 1 \mu \mathrm{C}=10^{-6} \mathrm{C} \\
& 1 \mu \mathrm{c}=10^{-9} \mathrm{C} \\
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$G=6.63 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
Universal constant $=$

SECTION A (COMPULSORY)

Question One

a) Define the following terms:

(i)	Momentum	(1 mark)
(ii)	Impulse	(1 mark)
(iii)	Coefficient of restitution	$\mathbf{(1 ~ m a r k)}$

b) Consider a block of mass M_{1} attached to a massless string that passes over a pulley hung by another mass M_{2}. Mass M_{1} is placed on a horizontal frictionless table as shown below.

$$
\mathrm{m}_{1}
$$

Show clearly that the tension T acting on the massless string is given by:

$$
T=\left(\frac{M_{1} M_{2}}{M_{1}+M_{2}}\right) g
$$

Where g is the acceleration on due to gravity on the earth's surface.
c) (i) State Ohm's Law
(ii) Other than temperature, explain two other factors that influence resistance of a linear conductor of electric current.
d) (i) Define capacitance.

$$
C_{1}=2 u F, C_{2}=C_{3}=0.5 \mu F
$$

(ii) In the circuit below,

$$
\text { and } \mathrm{V}=6 \mathrm{~V}
$$

C_{1}

(I) Compare the charge in each capacitor.
(3 marks)
(II) Calculate the potential difference across each capacitor.
e) A steady uniform current of 5 mA flows axially along a metal cylinder of cross-sectional area $0.2 \mathrm{~mm}^{2}$, Ωm
length 5 m and resistivity $3 \times 10^{-5} \quad$ Calculate:
(i) The potential difference between the ends of the cylinder.
(3 marks)
(ii) The rate of heat production.

SECTION B (Answer any TWO questions from this section)

Question Two

a) What do you understand by the term time constant of a discharging capacitor?
Ω
b) A 15.2 k resistor and a capacitor C , are connected in series and a 13.0 V potential is suddenly applied $\mu \mathrm{S}$
to the circuit. The potential difference across the capacitor rises to 5.0 V in 1.28
(i) Calculate the time constant
(ii) Calculate the capacitance of the capacitor
(iii) Determine the half life of the capacitor
c) A 2.00 and a 4.00 capacitors are connected to a 60.0 V battery. How much charge is supplied by the battery in charging the capacitors when wiring is in series?

Question Three

a) (i) State Newton's laws of motion.
(ii) A 600 N object is to be given an acceleration of $0.7 \mathrm{~ms}_{-2}$. How large an unbalanced force must act upon it to give it this acceleration?
b) When is a body said to move in uniform acceleration?
c) (i) A ball is thrown vertically into the air at $50 \mathrm{~ms}^{-1}$. How high will it rise and how long will it take to reach that height?
(3 marks)
(ii) A particle is fired with a constant velocity of $10 \times 10^{5} \mathrm{mls}$ into a region where it is subjected to an acceleration of $2 \times 10^{12} \mathrm{~ms}^{-1}$ directed opposite to the initial velocity. How far does the particle travel before coming to rest? How long does the particle remain at rest?
(4 marks)

Question Four

a) State Kirchhoff's Laws.
b) Show that the effective resistance R of three resistors connected in parallel is given as:

$$
R_{1}=\frac{R_{1} R_{2} R_{3}}{\left(R_{1} R_{2}+R_{2} R_{3}+R_{1} R_{3}\right)}
$$

c) Consider the circuit below:

(i) Find the equivalent resistance of the combination of resistors in the circuit.
(5 marks)
(ii) Compute current I if the applied voltage is 6 V .

Question Five

a) Three positive charges lie along the same lien as shown in figure below. Derive an expression for the force acting on Q_{2}.
(4 marks)
b) The charges below are placed at the corner of an equilateral triangle of side a.

Figure 4

Show that the force experienced by charge Q1 is given by the expression:

$$
F=\frac{\sqrt{3} K Q^{2}}{a^{2}}
$$

If the charges are identical.
c) Consider two charges Q_{1} and Q_{2} separated by a distance r_{1}. If the charge Q_{2} is moved towards Q_{1} such that the new separation distance r_{1} show that the work done is moving Q_{2} is given by:

$$
2=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{o}}\left[\frac{1}{r}-\frac{1}{r^{1}}\right]
$$

