TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MATHEMATICS \& COMPUTER SCIENCE
BACHELOR OF SCIENCE IN CIVIL ENGINEERING (A \& B)
BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING
BACHELOR OF SCIENCE IN MECHANICAL \& AUTOMOTIVE ENGINEERING BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE

APS 4201/SPH 2171/SPH 2174: PHYSICS II/PHYSICS FOR ENGINEERS II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
Question One (Compulsory)
a) (i) State Coulomb's Law
(ii) An electron and a proton are separated by a distance of $5.5 \times 10^{-11} \mathrm{~m}$. Find the magnitude of the electrostatic force between them
(3 marks)
b) Use the super position principle for forces between multiple charges to show that given charges q_{1}, $\mathrm{q}_{2} \ldots . \mathrm{q}_{\mathrm{n}}$, the force experienced by q_{1} due to the other multiple charges is given by:

$$
F_{1}=\sum_{\lambda=2}^{n} \frac{1}{4 \pi \varepsilon o} \frac{q_{1} q_{i}}{r_{i} \lambda^{2}} \vec{r} i_{1}
$$

where ${ }^{r_{i 1}}$ is the displacement between charge q_{1} an qi
c) In the classical model of the hydrogen atom the electron revolves around the proton with a radius of $r=0.53 \times 10^{-10} \mathrm{~m}$
. The magnitude of the electron charge and the proton charge is $\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$
(i) What is the magnitude of the electrostatic force between the proton and the electron
(2 marks)
(ii) What is the magnitude of the electric field due to the proton at r !
(2 marks)
(iii) What is the ratio of magnitudes of the electric (electrostatic) and gravitational force between electron and proton. Does the result depend on the distance between the proton and electron?
(4 marks)
d) (i) What is an electric dipole?
(ii) Show that the electric field strength due to a dipole is given by:

$$
\vec{E}=\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \vec{P}}{r 3}
$$

(4 marks)
e) Two capacitors C1 and C2 are connected in series with a voltage V across the combination. Show that the voltages across the individual capacitors are:

$$
V_{1}=\frac{C_{2} V}{C_{1}+C_{2}} \quad V_{2}=\frac{C_{1} V}{C_{1}+C_{2}}
$$

f) (i) Differentiate between self and mutual inductance
(ii) Give THREE differences between electric and magnetic forces
(iii) State Ampere's Law

Question Two

a) An electron q -e placed near a charged body experiences a force in the +y direction of magnitude 3.6 x $10^{-8} \mathrm{~N}$:
(i) What is the electric field at that location

$$
(q=+2 e)
$$

(ii) What would be the force exerted by the same body on the alpha particle the location formerly occupied by the electron? Take e $=+1.602 \times 10^{-19} \mathrm{C}$

placed at

$$
8 \times 10^{-9} \mathrm{C}
$$

b) Two points charges q_{1} and q_{2} of and $-8 \times 10^{-9} \mathrm{C}$ respectively shown in figure 1
c) Electric dipole consists of two charges $\mathrm{q}_{1}=6 \mathrm{Mc}$ and $\mathrm{q}_{2}=-6 \mathrm{mC}$ separated by 0.04 m . Fin the electric field at a point 1.5 m away from the centre of the dipole:
(i) On the side of the charge q1
(3 marks)
(ii) On the line perpendicular to the axis

Question Three

a) A potential difference of 300 V is applied to a $2 \mu \mathrm{~F}$ capacitor and a $8 \mu \mathrm{~F}$ connected in series:
(i) Calculate the potential difference across each capacitor
(3 marks)
(ii) The charged capacitors are reconnected with their positive plates together and then negative plates together with no external voltage being applied. Calculate the charge and the potential difference across capacitor
(iii) The charged capacitor in (a) are connected together with plates of opposite sign. Calculate the charge and the potential difference across each capacitor
b) A camera flash gets its energy from $150 \mu \mathrm{~F}$ capacitor and requires 170 V to fire. If the capacitor is charged by a 200 V source through an $18 \mathrm{~K} \Omega$ resistor how long must the photographer wait between the flashes
(4 marks)
c) Show that the capacitance for a spherical capacitor consisting of conducting sheet of radius b and θ
θ
charge concentric with a smaller conducting sphere of radius a and charge is given by:

$$
\begin{equation*}
C=\frac{a b}{k(b-a)} \tag{5marks}
\end{equation*}
$$

Question Four

a) (i) A certain meter has a resistance of 5Ω and deflect full scale for a voltage of 20 mV across its terminal. how can it be converted into a 3A ammeter
(ii) Calculate the magnetic field of a long straight wire carrying a current of 10 A at a distance 8 cm from the wire
(3 marks)
(iii) A wire loop of radius 10 cm has resistance of 2Ω. The plane the loop is perpendicular to a uniform magnetic field that is increasing at $0.10 \mathrm{~T} / \mathrm{s}$. Find the magnitude of the induced current in the loop

(5 marks)

b) (i) State and explain the factors that affect capacitance
(4 marks)
(ii) A parallel plate capacitor with air between the plates has a area of 2 cm 3 and plate separation of 1 mm . Find its capacitance
(4 marks)

Question Five

a) State Kirchoff's Laws
(2 marks)
b) A steady uniform current of 5 mA flows axially along a metal cylinder of cross-section area 0.2 mm 2 , length 5 m and resistivity $3 \times 10^{-5} \Omega \mathrm{~m}$. Find:
(i) The potential difference between the ends of the cylinder
(3 marks)
(ii) The rate of heat production
(3 marks)
c) Consider the circuit in figure 3

If $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{R}_{5}-1.7 \Omega, \mathrm{R}_{3}=3.5 \Omega$ and $\mathrm{E}_{1}=2.1 \mathrm{VE}_{2}=\mathrm{E}_{3}=6.3 \mathrm{~V}$, find the currents $\mathrm{i}, \mathrm{i}_{2}, \mathrm{i}_{3}$
(7 marks)
$\left({ }_{2}^{4} \mathrm{He}\right)$
d) Consider the formation of Helium nucleus whose atomic number is 2 and mass number is 4 using 2 protons and 2 neutrons. Determine mass deflect and the binding energy of helium nucleus.

$$
m_{n}=1.008 \quad 666 a . m . u
$$

The mp $=1.007277$ a.m.u, and mass of helium $=4.001509$ a.m.u where 1 a.m.u $=1.66 \times 10^{-27} \mathrm{~kg}$
e) e Kirchhoff's current and voltage 1 mos-
f) Explain what is meant by wheat stone bridge network, and derive a relation between the resistances when the bridge is balanced
g) A capacitor is charged through a resistor using a battery of constant e.m.f. Draw a sketch graph on some axis showing how the current through the circuit vary with time. Qualitatively explain the shufes
(4 marks)

