

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN ELECTRICAL & ELECTRONICS ENGINEERING (DEPE2, DEAE2, DICE2)

AMA 2150: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

_)	Simplify the following equations:			
d)	Simplify the following equations. $E = 25 x^4 x^3 = \frac{1}{2} x 4 x^{-\frac{1}{2}} x^{-\frac{2}{2}} x^{-\frac{1}{2}} = \frac{1}{2}$			
	$E = 25x^{2}y^{2}z^{2} \times 4 x^{2}y^{2}z^{2}z^{2}$			
		(3 marks)		
	$F = \sqrt[3]{a^6b^3} \div \sqrt{\frac{1}{2}a^4b^6} \times \left(4\sqrt{a^6b^2}\right)^{-\frac{1}{2}}$			
	(ii) giving the results without fractional indi	7 6 5		
		(3 marks)		
	$2\log_{a} x - 3\log_{a} 2x + \log_{4} x^{2}$			
b)	Simplify	(3 marks)		
->	Protocial the fuller in a			
C)	Factorize the following: $(y_1, 2y_1)^2$ $(2y_1, y_2)^2$			
	(x-2y) - (2x-y)	(2 marks)		
	$16x^2 - 24xy - 18x + 27y$	(2 marks)		
	(ii) r	(2 marks)		
		- 0		
d)	Use the first three terms of a binomial expansion to find the approximate value of 1.98 ⁸			
e)	(i) Express (4, -3) in polar co-ordinates	(3 marks)		
-)	$(4 - i3)^2$	(0		
	(ii) Simplify	(2 marks)		
	$3\tan\theta - \tan^3\theta$			
~	$1-3\tan^2\theta$			
f)	By use of demoivre's theorem, or otherwise prove that π (6 mar	'ks)		
g)	Express in radians in terms of :			
	(i) 120°			
	(II) 300° (iii) 383° 17' 23"	(3 marks)		
	(iii) 505 17 25	(5 mar k3)		
Qu	iestion Two			
		200		
a)	Solve for between and the equation $\theta = 0.36$ $\sin \theta = 1.70/\sin \theta \cos \theta + 0.70/\cos \theta$	$\theta = 0$		
uj	Solve for Setween and the equation	(4		
b)	Figure A below is a vertical aerial PO 10.0m high which stands on ground which is in	(4 marks) clined 10° to the		
-,	horizontal. A stay connects the top of the aerial P to a point R on the ground 7.00m c	lownhill from Q,		
	the foot of the aerial calculate:			
	(i) The length of the stay and	(4 marks)		
	(II) The angle which the stay makes with the ground.	(2 marks)		

c) Verify each of the following identities;

$$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$
(i)

$$\sin 2\theta = 2\sin \theta \cos \theta$$
(ii)
(2 marks)
(2 marks)

$$\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = 2\cos ec^2\theta$$

(3 marks)

(ii)
$$\cos 75^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$$
 (3 marks)

Question Three

a) Two resistors of value R¹, $\bigcap_{and} R_2 \Omega$ $\bigcap_{\alpha} \Omega_2$ When connected in parallel their total resistance is 2.4 . Obtain an equation relating R₁ to other given values. (4 marks) b) (i) Solve $ax^2 + bx + c = 0$, where a, b and c are constants by completing the square. (4 marks) $2x^2 + 5x - 3 = 0$ (ii) Solve by using formula (2 marks)

 $\frac{4}{x-3} + \frac{2}{x} = \frac{6}{x-5}$

c) Solve

© 2013 - Technical University of Mombasa

Page 3

(4 marks)

d) (i) Solve the following set of three equations in three unknowns: 2x + 4x + z = 5

	5x + 4y + 2 = 5	
	2x - y - z = 4	
	x + 3y + z = 1	
		(4 marks)
	7x - 4y = 23	
	4x - 3y = 11	
(ii) Solve		(2 marks)
Question Fo	ur	

$$(2+3x)^4$$

from pascal's triangle

a) (i) Write down the binomial expansion of

 $(1+x)^{15}$ (ii) Find the 10th term in the binomial expansion of written in ascending powers of x (2 marks) **b)** Evaluate each of the following showing your working (6 marks) 8_{c_3} (*ii*) $15_{c_{12}}$ 8!

c) Use the first three terms of a binomial expansion to find the approximate value of 1.01⁶

(3 marks)

(2 marks)

d) (i) Find the number of permutations of all the letters in the word KENYA (2 marks) (ii) How many different selection of 3 books can be made from 12 books on a shelf (1 mark) $\binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n}{r}$ (iii) Show that (4 marks)

Question Five

$$\overrightarrow{OA} = 3 + 4j$$
 $\overrightarrow{OB} = j\overrightarrow{OA}$ $AB^2 = OA^2 + OB^2$
a) If and show that (5 marks)

$$|2+3j|^{2}-|2-3j|^{2} = 12$$
b) (i) What is the locus of the point z if
 $e^{jz} \bullet e^{jy} = e^{j(x+y)}$ cos $2\theta = \cos^{2}\theta - \sin^{2}\theta$ sin $2\theta = 25\sin\theta\cos\theta$
(ii) Using prove and by showing that
 $\begin{cases} \cos x \cos y - \sin x \sin y = \cos(x+y) \\ \sin x \cos y + \cos x \sin y = \sin(x+y) \end{cases}$
(7 marks)

c) Find the three cube roots of
indicate which is the principal cube root.represent them on an Argand diagram and
(4 marks)

$$a + jb; 2(\cos 3\theta + j \sin 30^\circ)$$

d) Express in the form

(2 marks)