

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN ELECTRICAL \& ELECTRONICS ENGINEERING (DEPE2, DEAE2, DICE2)
AMA 2150: ENGINEERING MATHEMATICS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination
Answer Booklet
This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Simplify the following equations:

$$
E=25 x^{4} y^{3} z^{1 / 2} \times 4^{-1 / 2} x^{-2} y^{-1} z^{-1 / 2}
$$

(i)

$$
\begin{equation*}
F=\sqrt[3]{a^{6} b^{3}} \div \sqrt{\frac{1}{9} a^{4} b^{6}} \times\left(4 \sqrt{a^{6} b^{2}}\right)^{-1 / 2} \tag{3marks}
\end{equation*}
$$

(ii)
giving the results without fractional indices

$$
2 \log _{a} x-3 \log _{a} 2 x+\log _{4} x^{2}
$$

b) Simplify
c) Factorize the following:

$$
(x-2 y)^{2}-(2 x-y)^{2}
$$

(i)

$$
\begin{equation*}
16 x^{2}-24 x y-18 x+27 y \tag{2marks}
\end{equation*}
$$

(ii) r
d) Use the first three terms of a binomial expansion to find the approximate value of 1.98^{8}
e) (i) Express $(4,-3)$ in polar co-ordinates

$$
(4-j 3)^{2}
$$

(ii) Simplify

$$
\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}
$$

f) By use of demoivre's theorem, or otherwise prove that
(6 marks)
g) Express in radians in terms of :
(i) 120°
(ii) 300°
(iii) $383^{\circ} 17^{\prime} 23^{\prime \prime}$

Question Two

$\theta \quad \theta=0^{\circ} \quad 36^{\circ} \quad \sin ^{2} \theta-1.707 \sin \theta \cos \theta+0.707 \cos ^{2} \theta=0$
a) Solve for between and the equation
(4 marks)
b) Figure A below is a vertical aerial PQ 10.0 m high which stands on ground which is inclined 10° to the horizontal. A stay connects the top of the aerial P to a point R on the ground 7.00 m downhill from Q , the foot of the aerial calculate:
(i) The length of the stay and
(ii) The angle which the stay makes with the ground.
c) Verify each of the following identities;

$$
\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}
$$

(i)

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

(ii)
d) (i) Prove that:

$$
\begin{equation*}
\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}=2 \operatorname{cosec}^{2} \theta \tag{3marks}
\end{equation*}
$$

$$
\cos 75^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

(ii)

Question Three

a) Two resistors of value R^{1}, \quad and ${ }^{R_{2} \Omega}$ are connected in series to give a total resistance of 10 . Ω When connected in parallel their total resistance is 2.4 . Obtain an equation relating R_{1} to other given values.

$$
a x^{2}+b x+c=0
$$

b) (i) Solve , where a, b and c are constants by completing the square.

```
(4 marks)
```

$2 x^{2}+5 x-3=0$
(ii) Solve by using formula

$$
\frac{4}{x-3}+\frac{2}{x}=\frac{6}{x-5}
$$

c) Solve
d) (i) Solve the following set of three equations in three unknowns:

$$
\begin{align*}
& 3 x+4 y+z=5 \\
& 2 x-y-z=4 \\
& x+3 y+z=1 \tag{4marks}
\end{align*}
$$

$7 x-4 y=23$
$4 x-3 y=11$
(ii) Solve
(2 marks)

Question Four

$$
(2+3 x)^{4}
$$

a) (i) Write down the binomial expansion of from pascal's triangle
(2 marks) $(1+x)^{15}$
(ii) Find the $10^{\text {th }}$ term in the binomial expansion of written in ascending powers of x
(2 marks)
b) Evaluate each of the following showing your working

$$
8_{c_{3}} \text { (ii) } 15_{c_{12}} 8!
$$

(i)
c) Use the first three terms of a binomial expansion to find the approximate value of 1.01^{6}
d) (i) Find the number of permutations of all the letters in the word KENYA
(ii) How many different selection of 3 books can be made from 12 books on a shelf

$$
\binom{n-1}{r-1}+\binom{n-1}{r}=\binom{n}{r}
$$

(iii) Show that

Question Five

$$
\overline{O A}=3+4 j \quad \overline{O B}=j \overline{O A} \quad A B^{2}=O A^{2}+O B^{2}
$$

a) If
and
show that

$$
|2+3 j|^{2}-|2-3 j|^{2}=12
$$

b) (i) What is the locus of the point z if
$e^{j z} \bullet e^{j y}=e^{j(x+y)} \quad \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \quad \sin 2 \theta=25 \sin \theta \cos \theta$
(ii) Using prove and by showing that $\left\{\begin{array}{l}\cos x \cos y-\sin x \sin y=\cos (x+y) \\ \sin x \cos y+\cos x \sin y=\sin (x+y)\end{array}\right.$
(7 marks)

$$
6\left(\cos 240^{\circ}+j \sin 240^{\circ}\right)
$$

c) Find the three cube roots of indicate which is the principal cube root.
represent them on an Argand diagram and

$$
a+j b ; 2\left(\cos 3 \theta+j \sin 30^{\circ}\right)
$$

d) Express in the form

