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Question One (Compulsory)

a) (i) State the existence and uniqueness theorem for an nth order linear differential equation  (3 marks)

(ii) Prove that the equation:
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has a unique solution

b) (i)  Prove that 
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(ii) Find a linearly independent solution of the above equation by reducing the order (5 marks)

(iii) Hence write the general solution of the equation (1 mark)
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c)  Solve the non-linear equation 
  2'" yyy 

 
(4marks)

d)  Use the Rodriguez formula for Legendre to find the polynomial for P1(x) and P2(x)
(5 marks)

e)  (i)  Verify that the equation 
02  xydzdyzdxyz

 is exact (2 marks)

     (ii)  Hence find the solution of the equation in (i) above (5 marks)

Question Two

a) Locate and classify the singular points of the equation:
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b) Find the power series of 
02'2"1 2  yxyyx

about x = 0 (13 marks)

Question Three

a) (i)  Verify the condition of integrability of the equation:
       0sin1cos 233  dzxyzdyzzdxzz

(3 marks)

(ii)  Hence solve the above equation (5 marks)

b) Solve the following Bessel’s equation up to the x4 term
  0'" 222  ypxxyyx

(12 marks)

Question Four 

a) Solve the following equation by transforming to normal form: 
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b) Find the general solution to 
032 1112  ytyyt

 given that y1 (t) = t-1 is a solution by the method for
reducing the order (5 marks)

c) Find the power series of the following Legendre’s differential equation 
    01'2"1 2  yppxyyx

(10 marks)
Question Five
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a) Solve 
    14336'233"23 22  xxyyxyx

(10 marks)

b) The differential equation of a shaft which whirling with the line bearings horizontal is given by:
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where W is the weight of the shaft and w is the whirling speed. Taking the
length of the shaft as 2L with the origin at it’s centre and short bearings at both ends:
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Show  that  
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(10 marks)
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