TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN FOOD \& QUALITY ASSURANCE BACHELOR OF SCIENCE IN COMPUTER \& STATISTICS BACHELOR OF MATHEMATICS \& COMPUTER SCIENCE
(BSEE, BSCE, BSFQ, BSCS, BMCS)
SPH 2170/SPH2102/APS 4104: PHYSICS I
\section*{END OF SEMESTER EXAMINATION}
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS
Instructions to Candidates:
You should have the following for this examination
- Mathematical tables
- Scientific Calculator
This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Use the following information where necessary

- Acceleration due to gravity $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
- Election rest mass $\mathrm{Me}=9.11 \times 10^{-31} \mathrm{~kg}$
- Boltzmann constant $\mathrm{h}=1.38 \times 10^{-23} \mathrm{Jmo}^{-1} \mathrm{k}^{-1}$
- \quad Tripple point of water $=273.16 \mathrm{k}$
- \quad Speed of light in a vacuum $=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
- Universal gas constant $\mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~ms}^{-1}$
- Universal gravitation constant $\mathrm{G}=6.673 \times 10^{11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
- \quad Specific heat capacity of copper $=420 \mathrm{Jkg}-1 \mathrm{k}^{-1}$
- \quad Specific heat capacity of water $=420 \mathrm{Jkg}-1 \mathrm{k}^{-1}$
- \quad Specific heat capacity of aluminum $=900 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$
- \quad Latent heat of fusion of water $=2.1 \times 10^{3} \mathrm{Jkg}^{-1}$
- Latent heat of vaporization of water $=2.2 \times 10^{6} \mathrm{Jkg}^{-1}$

Question One (Compulsory)

a) Use dimensional analysis to check the validity of the equation:
$V^{2}=V o^{2}+2 a x$
where V and Vo are the final and initial velocities of a particle respectively, a is linear acceleration and x is the distance covered by the particle.
(2 marks)
b) (i) For a vertically upward projection, what is the velocity at the top of the path.
(1 mark)
(ii) If the velocity of a body changes by the same amount for each similar time interval, what can you say about the acceleration.
(1 mark)
c) (i) Explain the term "simple harmonic motion"
(1 mark)
(ii) Given that an object executing simple harmonic motion on a spring, show that the period of the

$$
T=2 \pi \sqrt{\frac{m}{K}}
$$

motion is
(6 marks)
d) State Newton's law of universal gravitation hence derive the dimensions of the gravitational constant.
e) A body of mass 5 kg is pulled up a smooth plane inclined at 30° to the horizontal by a force at 40 N acting parallel to the plane. Determine the acceleration of the body and the force exerted on it by the plane.
(5 marks)
f) A force at 3 N acts at 90° to a force of 4 N . Find the magnitude and direction of the resultant R .
(4 marks)
g) Explain clearly the difference between a transverse and a longitudinal wave.
(2 marks)
h) Two similar spheres of equal mass with initial velocities and respectively undergo an elastic

$$
\overrightarrow{u_{1}}=2 \vec{u}_{2}=20 \mathrm{~m} / \mathrm{s}^{2}
$$

collision. If , determine their velocities after collision.
(3 marks)
i) Calculate the work done against surface tension in blowing a soap bubble 4 mm in diameter given that the surface tension of soap solution is $2.5 \times 10^{-2} \mathrm{Nm}^{-1}$
(3 marks)

Question Two

a) Define the following terms:
(i) Specific heat capacity
(ii) Latent heat

(2 marks)

b) How many 20 g ice cubes whose initial temperature is $-10^{\circ} \mathrm{C}$ must be added to 1.0 L of hot water whose initial temperature is $90^{\circ} \mathrm{C}$, for the final mixture to have a temperature of $10^{\circ} \mathrm{C}$. Take specific heat
capacity of ice as $2100 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$ and latent heat of fusion of ice as $3.36 \times 10^{5} \mathrm{Jkg}^{-1}$
c) (I) State Hooke’s law
(4 marks)
(II) Explain the following terms:
(i) Mechanical strength
(ii) Ductility
(iii) Brittleness
(1 mark)
(iv) Elasticity
(III) A rod with a radius of 0.05 m and length of 2 m stretches 0.002 m when subjected to a tension force of $10,000 \mathrm{~N}$. What is Young's modulus for this rod?
(4 marks)
(IV) A piece of copper originally 305 mm long is pulled with stress of 276 Mpa . If the deformation is entirely elastic, what would be the resultant elongation (E of copper $=110 \mathrm{Gpa}$) ($\mathbf{4}$ marks)

Question Three

a) (i) State Kepler's Laws of planetary motion.
(ii) Show that Kepler's third law of motion is consistent with Newton's law of universal gravitation.
(5 marks)
b) Express the angular momentum of a satellite of mass m in a circular orbit of radius r in terms of its:
(i) Kinetic energy
(3 marks)
(ii) Potential energy
(2 marks)
(iii) Total energy
(2 marks)
c) Show that the period T of a body attached to a conical pendulum given a slight angular displacement θ
is given by:
$T=2 \pi \sqrt{\frac{L \cos \theta}{g}}$
)
where L is the length of the pendulum and g, the gravitational acceleration
Question Four
a) The system of forces shown in figure 1 is in equilibrium. Determine P and Q
(5 marks)
b) State and explain laws of reflection
c) A pump rises water through a height of 3 m at a rate of 300 kg per minute and delivers it with a velocity of $8 \mathrm{~ms}^{-1}$. Determine the power output at the pump (Assume $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(5 marks)
d) A small baed of mass m is threaded on a smooth circular wire of radius r and centre 0_{1} and which is fixed in a vertical plane. The bead is projected with speed u from the highest point, A of the wire. Find
the reaction on the bead due to the wire when the bead is at P 1 in terms of $\mathrm{m}, \mathrm{g}, \mathrm{r}, \mathrm{u}$ and where $\theta=A \hat{0} P$

Question Five

a) A particle is moving with simple harmonic motion of period 8 seconds and amplitude 5.0 m . Determine:
(i) Speed of the particle when it is 3 m from the centre and its motion
(ii) The maximum speed
(iii) The maximum acceleration

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

b) With the aid of a neat sketch, show that the T at a pendulum is given by length at the string.
where L is the (5 marks)
c) (i) Define linear momentum
(ii) State the law of conservation as linear momentum
(iii) Explain how force is related to linear momentum
(2 marks)
(4 marks)

