

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

UKUNDA CAMPUS
DEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN ELECTRICAL POWER ENGINEERING (CEPE II)
AMA 1102: ENGINEERING MATHEMATICS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Non-programmable Calculator

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

SECTION A (COMPULSORY)

Question One

π
a) Express 120° in radians in terms of and 1.6 radians in degrees.
(4 marks)
b) (i) Find the diameter of a circle if an arc of length 6 cm subtends an angle of 2.2 radians at the centre.
(4 marks)

$$
y=x^{2}-3 x-4 \quad y=x-2 \quad x=-3 \quad x=5
$$

(ii) Plot the graph of and and the same set of axes between a Determine the values of x at the point of intersection and give the quadratic equation in x of which there values are the roots.
(10 marks)
c) The temperatures of component was monitored at regular interval on 80 occasions. The frequency distribution was as below:

Temperature $\mathbf{x}\left({ }^{\circ} \mathbf{C}\right)$	$30.0-30.2$	$30.3-30.5$	$30.6-30.8$	$30.9-31.1$
Frequency \mathbf{f}	6	12	15	$?$

$31.2-31.4$	$31.5-31.7$	31.832 .0
13	9	4

Draw a frequency diagram to represent this information.
(4 marks)
d) Express the following in partial fractions:

$$
\begin{equation*}
\frac{2 x^{3}+3 x^{2}-54 x+50}{x^{2}+2 x-24} \tag{8marks}
\end{equation*}
$$

SECTION B (Answer any TWO questions from this section)

Question Two

a) (i) The area of field is in the form of a quadrilateral PQRS as shown in figure 1 below. Determine it area.

Figure 1
(8 marks)
(ii) The value of y ordinates of a curve and their distance x from the origin are given in the table below. Plot the graph and find the area under the curve by mid-ordinate rule.

X	0	1	2	3	4	5	6
Y	2	5	8	11	14	17	20

(6 marks)
b) (i) Given

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi \quad \cos 60=1 / 2, \cos 45=1 / \sqrt{2}, \sin 60=\sqrt{3} / 2
$$

$\sin 45=\frac{1}{\sqrt{2}}$ and and express $\cos 15$ in surd form
(ii) Evaluate and show the quadrant in which it lies on Cartesian plane.
(2 marks)

Question Three

a) (i) The angle of elevation from a given poing of top of a tower which stands on horizontal ground is 22°. From a point 120 m nearer to the tower, the angle of elevation is 44°. Find the height of the tower.
(8 marks)

$$
S=u t+\frac{1}{2} f t^{2}
$$

(ii) If \quad Express f in terms of s, u and t
(4 marks)
(iii) Prove the following trigonometric identities.

$$
\sin \theta \sec \theta=\tan \theta
$$

(i)

$$
\begin{equation*}
\frac{\operatorname{cosec} \theta+\cot \theta \tan \theta}{\tan \theta+\sec \theta}=\frac{\cos \theta+1}{\sin \theta+1} \tag{2marks}
\end{equation*}
$$

(ii)
(6 marks)

Question Four

$$
\angle C=69^{\circ} \quad a=16.40 \mathrm{~cm} \quad b=11.80
$$

a) (i) Solve the triangle ABC given
and Figure 2

C

(5 marks)
(ii) Two sides of an acute angled triangular plot of ground are 48.0 m and 6.0 m respectively. If the area of the plot is $550 \mathrm{~m}^{2}$, find the length of the third side and the angles of the triangular plot.
b) Express in partial fractions.

$$
\frac{42 x+44}{(6 x+5)^{2}}
$$

(i)

$$
\frac{18 x^{2}+3 x+6}{(3 x+1)^{3}}
$$

(ii)
(4 marks)
(6 marks)

Question Five

a) Find the length of arc of a circle of radius 4.23 cm when the angle subtended at the centre is 1.46 radians.
b) Prove the following identities:
$\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1$
(i)

$$
\frac{1+\tan ^{2} B}{1+\cot ^{2} B}=\tan ^{2} B
$$

(ii)
(2 marks)
(2 marks)
c) (i) Plot the graph of $\begin{array}{ll}y=\sin A & \left(0-180^{\circ}\right) \\ \text { from table of results } & \text { at } 15^{\circ} \text { intervals. (4 marks) }\end{array}$
(ii) In a single swing, a pendulum move through an angle of 9°. Determine the length of arc traced by the pendulum bob correct to the nearest centimeters if the length of the pendulum is 1.4 m .
(3 marks)
$\sec 1.26 \pi$
(iii) Evaluate correct to 4 decimal places

