

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

UKUNDA CAMPUS

DEPARTMENT OF MATHEMATICS & PHYSICS

CERTIFICATE IN ELECTRICAL POWER ENGINEERING (CEPE II)

AMA 1102: ENGINEERING MATHEMATICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet

- Mathematical Tables

- Non-programmable Calculator

This paper consist of **FIVE** questions in **TWO** sections **A** & **B**

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

SECTION A (COMPULSORY)

Question One

 π

a)	Express 120° in radians in terms of	and 1.6 radians in degrees.	(4 marks)
	1	0	()

- **b)** (i) Find the diameter of a circle if an arc of length 6cm subtends an angle of 2.2 radians at the centre. **(4 marks)**
 - $y = x^2 3x 4$ y = x 2 x = -3 x = 5(ii) Plot the graph of and on the same set of axes between and . Determine the values of x at the point of intersection and give the quadratic equation in x of which there values are the roots. (10 marks)
- **c)** The temperatures of component was monitored at regular interval on 80 occasions. The frequency distribution was as below:

Temperature x (°C)		30.0 - 30.2		30.3 - 30.5	30. 6 – 30.8	30.9 - 31.1			
Frequency f		6		12	15	?			
31.2 – 31.4	31.5 – 31.	7	31.8 32.0						
13	9		4						

Draw a frequency diagram to represent this information.

d) Express the following in partial fractions:

$$\frac{2x^3 + 3x^2 - 54x + 50}{x^2 + 2x - 24}$$

(8 marks)

(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) (i) The area of field is in the form of a quadrilateral PQRS as shown in figure 1 below. Determine it area.

Figure 1

(8 marks)

(2 marks)

(ii) The value of y ordinates of a curve and their distance x from the origin are given in the table below. Plot the graph and find the area under the curve by mid-ordinate rule.

Х 3 0 1 2 4 5 6 Y 2 5 8 11 14 17 20 (6 marks) $\cos 60 = \frac{1}{2}, \cos 45 = \frac{1}{\sqrt{2}}, \sin 60 = \frac{\sqrt{3}}{2}$ $\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$ **b)** (i) Given and and $\sin 45 = \frac{1}{\sqrt{2}}$ cos15 express in surd form (4 marks) sec 483°46' (ii) Evaluate and show the quadrant in which it lies on Cartesian plane.

Question Three

a) (i) The angle of elevation from a given poing of top of a tower which stands on horizontal ground is 22°. From a point 120m nearer to the tower, the angle of elevation is 44°. Find the height of the tower.
 (8 marks)

$$S = ut + \frac{1}{2} ft^{2}$$
(ii) If . Express f in terms of s, u and t (4 marks)
(iii) Prove the following trigonometric identities.
 $\sin \theta \sec \theta = \tan \theta$ (2 marks)
(i) $\frac{\cos ec\theta + \cot \theta \tan \theta}{\tan \theta + \sec \theta} = \frac{\cos \theta + 1}{\sin \theta + 1}$ (6 marks)

Question Four

a) (i) Solve the triangle ABC given C $C = 69^{\circ} a = 16.40 cm$ b = 11.80 and Figure 2

С

(5 marks)

(ii) Two sides of an acute angled triangular plot of ground are 48.0m and 6.0m respectively. If the area of the plot is 550m², find the length of the third side and the angles of the triangular plot.

(5 marks)

b) Express in partial fractions. $\frac{42x + 44}{(6x + 5)^{2}}$ (i) $\frac{18x^{2} + 3x + 6}{(3x + 1)^{3}}$ (ii) (6 marks)

Question Five

- a) Find the length of arc of a circle of radius 4.23cm when the angle subtended at the centre is 1.46 radians.
 (2 marks)
- b) Prove the following identities: $\cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1$ (i) $\frac{1 + \tan^{2} B}{1 + \cot^{2} B} = \tan^{2} B$ (ii) (2 marks) (2 marks)

y = sin A $(0-180^{\circ})$ c) (i) Plot the graph of from table of results at 15° intervals. (4 marks) (ii) In a single swing, a pendulum move through an angle of 9°. Determine the length of arc traced by the pendulum bob correct to the nearest centimeters if the length of the pendulum is 1.4m.

(3 marks)

sec 1.26π

(iii) Evaluate correct to 4 decimal places

(3 marks)